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Abstract
The flow pattern is one of the most basic characteristic parameters of oil–gas two-phase flow,
and it has a great influence on the accurate measurement of other parameters of two-phase flow.
Over the past decade, the convolutional neural network (CNN) algorithm has been widely used
in flow pattern research. Unfortunately, the flow pattern research based on the CNN algorithm is
more on model structure optimization, and there is still little insight into the relationship
between the CNN algorithm and the physical meaning of the flow pattern. Thus, in this paper,
inspired by the neural network visualization gradient-based class activation mapping
(Grad-CAM) method, we propose the electrical capacitance tomography (ECT) Attention
Reverse Mapping algorithm (EARM) to explore the relationship between the physical meaning
of flow patterns and the CNN algorithm. Specifically, the Grad-CAM method is used to obtain
heatmaps of flow patterns, and the EARM algorithm combines the hotspot information of the
flow pattern heatmap with the ECT image reconstruction principle, which deeply explores the
relationship between the CNN flow pattern identification and the ECT image reconstruction
algorithm. Furthermore, we conduct prediction experiments based on the parameters of the flow
pattern hotspot capacitance data, and the experimental results are compared with the ECT
original capacitance data parameter prediction. The prediction accuracy of oil–gas two-phase
flow parameters has been improved by more than 50% on average, and experiments have
verified the correctness of the visualization of CNN network flow pattern identification.

Keywords: neural network interpretability, gradient-based class activation mapping model, flow
pattern heatmap, convolutional neural network, ECT image reconstruction, flow rate prediction,
electrical capacitance tomography

(Some figures may appear in colour only in the online journal)

1. Introduction

Oil–gas two-phase flow exists widely in the petroleum
industry. In recent years, various parameters of oil–gas
two-phase flow have been widely studied. The correct
measurement of oil–gas two-phase flow parameters has great

significance for the rational and safe exploitation of oil [1].
The flow pattern is an important parameter of oil–gas two-
phase flow. It not only affects the flow morphology, heat, and
mass transfer performance of two-phase flow, but also has
a profound an impact on the accurate measurement of other
parameters of oil–gas two-phase flow [2]. Currently, many
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Figure 1. The recognition result of the picture heatmap. (a1) The
original picture of the person. (a2) The heatmap of the person. (b1)
The original picture of the ECT image. (b2) The heatmap of the
ECT image.

articles use neural network methods to classify and identify
flow patterns, but only extract the surface information of flow
patterns for research and analysis, and do not deeply explore
information about flow patterns. In this paper, the heatmap
of the flow pattern is studied for the first time, and the con-
nection between the flow rate parameters and the reconstruc-
ted image is explored, such as the internal mechanism of
hotspot distribution in a flow pattern heatmap (as shown in
figure 1).

Figure 1 shows the recognition results of the heatmap of
the picture. (a1) and (a2) shows the recognition results of the
heatmap of the person picture, where the hotspot area repres-
ents the main recognition area recognized by the convolutional
neural network (CNN) network. (b1) and (b2) show the heat-
map recognition results of the flow pattern. The area marked
with a red circle in figure 1 (b2) is the hotspot area for CNN
network flow pattern recognition; that is, the main recognition
flow pattern area. It can be seen from figure 1 that under this
flow pattern condition, the main recognition area of the CNN
network flow pattern recognition is the upper left area of the
flow pattern.

At present, the main hardware devices used to obtain the
oil–gas two-phase flow pattern include high-speed cameras
[3], wire-mesh sensors [4], microwave sensors [5], ultrasonic
sensors [6], and electrical sensors. Da Silva et al used a wire-
mesh sensor to measure the oil–gas two-phase flow pattern,
and the sensor had a measurement speed of 5000 frames per
second [7]. López et al used a high-speed camera to measure
the flow pattern of oil–gas two-phase flow, and converted the
flow pattern diagram to a black and white image for analysis
by threshold technology [8]. Rahiman et al used an ultrasonic

doppler sensor to measure the flow velocity of oil–gas two-
phase flow and reconstruct the flow pattern. When the image
reconstruction speed was 10 frames per second, its perform-
ance was optimal [9]. Although the above sensors can real-
ize flow pattern recognition, they all have their own defects.
Among them, high-speed camera equipment is expensive and
requires a high measurement environment, which is not suit-
able for field environment measurement of the oil field. The
wire-mesh sensor has a complex structure, making field main-
tenance difficult in oil fields. The ultrasonic sensor has a low
measurement accuracy and cannot meet the high-accuracy
requirements of the experiment. Therefore, electrical sensors
are designed and applied for parameter measurement and flow
pattern identification of multiphase flow. Meng et al used an
electrical resistance tomography (ERT) sensor to identify the
gas–water two-phase flow pattern, and used the least squares
support vector machine method to establish the gas flow rate
measurement model for gas–water two-phase flow [10]. Li
et al used the capacitance value obtained by the electrical capa-
citance tomography (ECT) sensor to perform real-time iden-
tification of oil–gas two-phase flow patterns and measure the
gas flow rate based on the results of the flow pattern prediction
[11]. Compared with other sensors, electrical sensors have the
advantages of low cost, high equipment accuracy, and mature
product development. They are widely used in flow pattern
recognition of oil–gas two-phase flows.

For flow pattern identification of oil–gas two-phase flow,
the commonly usedmethods are the visual observationmethod
[12], conductivity probe detection method [13], particle image
velocimetry (PIV) [14], and dual-impedance probe measure-
ment method [15]. Charles and Lilleleht used a combination of
camera shooting and visual observation to measure gas–liquid
two-phase flow patterns [16]. Augier et al used PIV tomeasure
oil–water two-phase flow patterns [17], and Lovick andAngeli
used a dual-impedance probe to measure the droplet distribu-
tion in oil–water two-phase flow [15]. Hanafizadeh et al pro-
posed a method for identifying the vertical pipe flow pattern.
Fifteen pressure transmitters were placed at different positions
in the vertical pipe, and the gas–water two-phase flow pattern
was predicted based on the average pressure and pressure fluc-
tuation data [18]. Compared with the traditional method of
flow pattern identification, the neural network has low cost and
demonstrates a significant increase in identification accuracy
and greatly improved identification efficiency. To date, many
studies have identified and predicted flow patterns based on
neural network models. Roshani et al used the artificial neural
network algorithm combined with the gamma-ray attenuation
method to identify the flow pattern of gas–liquid two-phase
flow and predict the voidage [19]. Hu et al introduced the
method of speech emotion feature identification to flow pat-
tern identification, and input the extracted electrostatic wave
signal into the backpropagation (neural network for flow pat-
tern identification. The flow pattern identification rate reached
97% [20]. Zhou et al used the independent component ana-
lysis radial basis function model to extract characteristic para-
meters of the flow pattern and identify the flow pattern for
the gas–liquid two-phase flow [21]. However, current oil–gas
two-phase flow identificationmethods only use neural network
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models for flow pattern identification and flow rate prediction,
and do not explore the relationship between neural networks
and the physical meanings associated with image reconstruc-
tion algorithms. They lack the interpretability of neural net-
work flow pattern identification. In this paper, by studying the
heatmap of the oil–gas two-phase flow pattern, the internal
principle of the neural network identification flow pattern is
analyzed, and the relationship between the neural network and
the physical meaning of the image reconstruction algorithm is
explored.

In various fields such as image classification, object detec-
tion, and semantic segmentation, CNNs and other deep neural
networks have highlighted their superior performance [22].
Improving the interpretability of neural networks has been
a wide concern and has become a current research hotspot.
The visualization method is the most widely used method in
data-based interpretability analysis. The visualization method
mainly labels important parts of the data through visualiza-
tion tools, and combines the neural network learning process
with the original measurement data, so that we can under-
stand the learning process of deep learning more clearly [23].
Selvaraju et al used a visualization method to generate a heat-
map of the gradient of the convolutional layer in the CNN
network, thereby displaying and labeling the important pixels
of the input image, which improved our understanding of the
learning area of deep learning [24]. The visualization method
of the heatmap provides a more direct understanding of the
internal mechanism of neural networks. In the study of oil–
gas two-phase flow parameters, neural networks are widely
used. Yang et al used the U-net model in a CNN network for
flow pattern identification [25], and Xu et al used the CNN
model to predict the parameters of oil–gas two-phase flows
based on the flow pattern [26]. At present, neural networks
are only in the application stage in the field of two-phase flow
parameter measurement. The relationship between neural net-
works and the true physical meaning of two-phase flow para-
meters has not been explored. It lacks the interpretability of
neural networks. Therefore, for the first time, this paper studies
the heatmap of the oil–gas two-phase flow pattern. By analyz-
ing the heatmap of the flow pattern, the relationship between
the neural network and the physical meaning of the image
reconstruction algorithm is explored. This paper proposes the
ECT Attention Reverse Mapping algorithm (EARM), which
includes a neural network heatmap to mine the true physical
meaning of each position of the flow pattern obtained by image
reconstruction.

The research in this paper is of great significance to
the development of petroleum and other related compan-
ies. It reduces industrial production operating costs and
improves industrial production efficiency through advanced
technical means. The main contributions of this paper are
as follows.

(a) We propose the EARM algorithm, which realizes the visu-
alization of CNN network flow pattern identification. By
studying the heatmap of the oil–gas two-phase flow pat-
tern, the true physical meaning of each position of the flow
pattern is deeply explored, and the relationship between

the neural network and the physical meaning of the image
reconstruction algorithm is explored.

(b) We conduct a parameter prediction experiment based on
flow pattern hotspot capacitance data, and prove the cor-
rectness of the proposed CNN network flow pattern iden-
tification visualization. This improves the robustness and
adaptability of the CNN algorithm in the field of flow pat-
tern research, and has positive significance for the sub-
sequent optimization of the CNN network in ECT image
reconstruction.

In the rest of this paper, section 2 describes the methodo-
logy of flow pattern analysis and visualization methods. Sec-
tion 3 draws and analyzes flow pattern heatmaps under differ-
ent working conditions. Section 4 describes the ECTAttention
ReverseMapping algorithm. Section 5 shows and analyzes the
experimental results of the EARM algorithm. Section 6 gives
a full-text summary and future research directions.

2. Methodology

2.1. Application of CNN in multiphase flow

In recent years, artificial intelligence technology has
developed rapidly, and deep learning has been applied to more
and more fields. CNNs, as one of the representative algorithms
for deep learning, are mainly used for image identification. In
the current research of multiphase flow, especially in the fields
of image reconstruction, flow pattern identification, and yield
prediction, CNN technology is widely used.

Tan et al [27] used a CNN for ERT image reconstruction.
The CNN algorithm has good generalization for image recon-
struction. Compared with the flow pattern obtained by the tra-
ditional image reconstruction algorithm, that obtained by the
CNN algorithm is more accurate; that is, it is closer to the
real distribution of the flow pattern in the pipeline. Dang et al
[28] optimized the sensor hardware model and established a
measurement model based on CNN-LSTM to measure the
flow parameters of multiphase flows with high accuracy. Du
et al [29] used a CNN to identify oil–water two-phase flow
patterns, and used the LeNet-5, AlexNet, and VGG-16 mod-
els to identify flow patterns. Experimental results show that
deeper network structures have higher accuracy. In the cur-
rent research, the CNN network only stays at the application
stage in the field ofmultiphase flow. The CNNnetwork is often
used for flow pattern identification and parameter measure-
ment of multiphase flow. At present, no research has explored
the relationship between CNNs and the physical meaning of
multiphase flow measurement models. In the field of mul-
tiphase flow, exploring the inherent mechanism of CNN iden-
tification and prediction can help improve the accuracy of
prediction.

CNNs are mainly used for image identification, so in the
field of multiphase flow measurement, the most applied direc-
tions for CNN models are image reconstruction and flow pat-
tern prediction. The current commonly used ECT image recon-
struction algorithms include the linear projection algorithm,
Tikhonov regularization algorithm, Landweber algorithm, etc.
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There has been much research on the improvement of the
ECT image reconstruction algorithm. Yang and Peng analyzed
the influence of the capacitance between different electrode
pairs in ECT sensors on the flow patterns at different posi-
tions. The experimental results show that the adjacent elec-
trode pairs are most sensitive to the change of the dielectric
constant at the container wall, and have little effect on the flow
pattern’s center area. The opposite electrode is more sensit-
ive to changes in the central area, and the spacer electrode is
more sensitive to changes in the sub-central area [30]. This
study explores the distribution of capacitance values from the
perspective of image reconstruction, but currently there is no
research exploring the relationship between image reconstruc-
tion algorithms and CNNs. Inspired by the above, based on the
gradient-based class activation mapping (Grad-CAM) method
and ECT image reconstruction algorithm, this paper proposes
an EARM algorithm for mining the internal mechanism and
connection between the CNN network and the image recon-
struction algorithm.

2.2. Relevant background for heatmap research

For a long time, although the CNN algorithm has obvious
effects, it has been controversial because of its poor inter-
pretability. Selvaraju et al proposed a method of CNN net-
work interpretability, displaying the features learned by the
CNN network in the form of a heatmap, in order to find the
focus of the CNN model; that is, the hotspot. Grad-CAM is
a commonly used visualization model for obtaining heatmaps
of images. The steps of Grad-CAM to solve the heatmap are
as follows. First, it finds the feature map obtained by image
extraction after feature extraction and the last convolution.
Each feature map has different weights in the fully connec-
ted layer, and the weight of each feature map is obtained by
back-propagation. The weight solution formula of Grad-CAM
is shown in formula (1).

βaq =
1
K

∑
m

∑
n

∂xa

∂Bqmn
(1)

In formula (1), βα
q represents the weight of the qth feature

map corresponding to the class α, k is the expected number
of feature maps, xα is the gradient of the score for class α,
and Bqmn is the expected value of the (m, n) position in the qth
feature map. Each feature map is multiplied by the weight
to obtain a weighted feature map, and all feature maps are
summed and activated using the Relu function. The calcula-
tion formula is shown in formula (2).

LaGrad−CAM = Relu

(∑
q

βaqB
q

)
(2)

In formula (2), only the features useful for the category
are retained after the Relu activation function, where posit-
ive numbers represent features useful for the category, and
negative numbers represent features useful for other categor-
ies (i.e. useless features). If there is no Relu activation func-
tion, the heatmap represents multi-category features. Finally,

Figure 2. Effect of heatmap identification. (a1) Single-target
identification original image. (a2) Single-target identification
heatmap. (b1) Multi-target identification original image. (b2)
Multi-target identification heatmap.

Figure 3. Schematic diagram of experimental equipment.

the heatmap is scaled to the image size to facilitate weighting
with the image. Figure 2 shows the original image and heat-
map of the single target and multiple targets identified using
the CNN + Grad-CAM model.

3. Flow pattern heatmap analysis

The experimental data are collected through the semi-
industrial multiphase flow experimental measurement plat-
form. A schematic diagram of the platform is shown in
figure 3.

Figure 3 shows the experimental platform of this exper-
iment, in which oil is stored in the separator, gas is gen-
erated by the gas-phase compressor, and the oil phase and
the gas phase are mixed and pass through the test pipeline.
The experimental equipment is distributed in sequence on the
pipeline, followed by an upstream ECT sensor, venturi tube,
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Table 1. Working condition distribution table (m3 h−1).

Gas
Oil 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 10

20 Case1 Case5 Case9 Case13 Case17 Case21 Case25 Case29 Case33 Case37 Case41 Case45 Case49
50 Case2 Case6 Case10 Case14 Case18 Case22 Case26 Case30 Case34 Case38 Case42 Case46 Case50
90 Case3 Case7 Case11 Case15 Case19 Case23 Case27 Case31 Case35 Case39 Case43 Case47 Case51
150 Case4 Case8 Case12 Case16 Case20 Case24 Case28 Case32 Case36 Case40 Case44 Case48 Case52

Figure 4. Heatmap of the ECT image upstream of the venturi tube.

and downstream ECT sensor. The specific parameters of the
ECT sensor and venturi tube are provided in the literature [31].
The oil–gas two-phase flow passes through the pipeline equip-
ment for parameter measurement in sequence, and different
working conditions are set during the experiment; the oil flow
rate and gas flow rate under each working condition are dif-
ferent. Table 1 shows the oil flow rate and gas flow rate under
different working conditions.

As shown in table 1, a total of 52 working conditions have
been designed, in which the distribution range of the oil flow
rate is 1–10 m3 h−1, and the distribution range of the gas flow
rate is 20–150 m3 h−1. The specific experimental equipment
parameters and experimental methods are described in the lit-
erature [31].

The capacitance values measured by the ECT sensor under
different working conditions are obtained through experi-
ments. The linear back-projection algorithm is used to get the
grayscale permittivity distribution image, and then get the flow
pattern of the oil–gas two-phase flow. In this paper, we obtain

the flow pattern of the oil–gas two-phase flow upstream and
downstream of the venturi tube.

Based on the Inception-V3 model in the CNN network, the
Grad-CAM method is used to realize the visualization of the
neural network identification flow pattern. The Relu activation
function is used in the Inception-V3 model, and its expression
is shown in formula (3).

f(x) =max(x,0) (3)

The loss function of this model uses the mean-square
error (MSE) loss function, and its expression is shown in
formula (4).

Loss=

∑n
i=1 (yi− ypi )

2

n
(4)

In formula (4), yi represents the true oil flow rate and gas
flow rate, ypi represents the predicted oil flow rate and gas flow
rate, and n is 2.
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The Grad-CAM algorithm is used to generate the heat-
map of the convolution layer’s gradient of the Inception-V3
model. The capacitance data of the ECT sensor under 52 work-
ing conditions are measured through experiments, and the
flow patterns under different working conditions are obtained
through the linear back-projection (LBP) image reconstruc-
tion algorithm. Through the Grad-CAM algorithm, heatmaps
of the flow patterns under different working conditions are
generated. In the experiment, the flow patterns of oil–gas
two-phase flow upstream and downstream of the venturi tube
are measured separately, so this paper respectively analyzes
the heatmaps of the flow patterns upstream and downstream
of the venturi tube. Figure 4 shows the heatmap of the flow
pattern upstream of the venturi tube.

Figure 4 shows the distribution of hotspots in the flow pat-
tern heatmap upstream of the venturi tube. Under different gas
flow rate conditions, the distribution of hotspots in the heat-
map is different. When the gas flow rate is small (gas flow
rate is 20 m3 h−1), the hotspots of the heatmap are mainly dis-
tributed on the right side of the flow pattern. When the gas
flow rate is large (gas flow rate is 50 m3 h−1), the hotspots
of the heatmap are mainly distributed on the upper side of
the flow pattern. When the gas flow rate continues to increase
(the gas flow rate is 90–140 m3 h−1), the hotspots of the heat-
map are mainly distributed on the upper left side of the flow
pattern. With the increase of the gas flow rate, the distribu-
tion of hotspots in the flow pattern heatmap shows a coun-
terclockwise rotation trend. The analysis of the distribution
of hotspots in the flow pattern heatmap shows that the CNN
network has different concerns in identifying the flow pat-
tern at different flow rates. Figure 5 shows the analysis of
the heatmap of the flow pattern downstream of the venturi
tube.

Figure 5 shows the heatmap of the flow pattern downstream
of the venturi tube. When the gas flow rate is small (gas flow
rate is 20 m3 h−1), the hotspots of the heatmap are mainly dis-
tributed on the left side of the flow pattern. As the gas flow
rate increases (gas flow rate is 50–140), the hotspots of the
heatmap are mainly distributed on the upper left side of the
flow pattern. When the gas flow rate is 50 m3 h−1, the hot-
spot area of the heatmap is distributed in the top left corner of
the image. A possible reason is that the flow pattern is mainly
slug flow and annular flow under this gas flow rate. How-
ever, the oil phase distribution of the ECT image of the oil–
gas two-phase flow is not concentrated in the top left corner
of the pipeline. In the case that the annular flow or the slug
flow is close to the annular flow, the oil phase will reach the
top left corner of the ECT image. The top left corner area
of the ECT image can better reflect the change characterist-
ics of the flow pattern. The neural network mainly identi-
fies the flow pattern with changing characteristics. Therefore,
when the gas flow rate in figure 5 is 50 m3 h−1, the neural
network mainly identifies the area in the top left corner of
the ECT image. Compared with the heatmap upstream of the
venturi tube, the hotspot distribution on the heatmap down-
stream of the venturi tube is more stable. In this paper, accord-
ing to the different characteristics of the hotspot distribu-
tion of the flow pattern heatmap, combined with the physical

principle of ECT image reconstruction, an EARM algorithm
is proposed to mine the internal mechanism and connection
between the neural network and the image reconstruction
algorithm.

4. EARM algorithm

Algorithm 1: EARM

Input:{cap|cap ∈Work_Condition[i],0≤ i≤ 52}
Output: Cap_Best\{\}
1 Cap_New\{\}←− ∅;
2 Cap_Contrast1\{\}←− ∅;
3 Cap_Contrast2\{\}←− ∅;
4 Cap_Best\{\}←− ∅;
5 foreach
work_con←−Work_Condition[i], i ∈ (0,52) do

6 foreach cap∈work_con do
7 Ect_img←− LBP(cap);
8 Heatmap←− Grad_cam(Ect_img);
9 Through Heatmap get hotspot;
10 cap_new←− Update

(hotspot, cap,Del_threshold);
11 cap_contrast1←− Update

(hotspot, cap,Del_threshold_small);
12 cap_contrast2←− Update

(hotspot, cap,Del_threshold_large);
13 Insert cap_new, cap_contrast1 and cap_contrast2

respectively in Cap_New{}, Cap_Contrast1{} and
Cap_Contrast2{};

14 end
15 for cap_temp[1], cap_temp[2] and cap_temp[3]

∈ Cap_New{}, Cap_Contrast1{}and
Cap_Contrast2{}do

16 acc1, acc2, acc3←− CNN(cap_temp1,
cap_temp2 , cap_temp3);

17 acc_best_coordinate←−Max(acc1, acc2, acc3);
18 Get the cap_temp[n] corresponding to

acc_best_coordinate;
19 Cap_Best.append(cap_temp[n]);
20 end
21 return Cap_Best
22 end

According to figures 4 and 5, under different gas flow
rate conditions, the distribution of hotspots in the ECT sensor
flow pattern heatmap obtained by the CNN and= Grad-
CAM model is different. This shows that under different
flow rate conditions, the CNN network has different atten-
tion positions for flow pattern identification. That is to say,
when the CNN network performs flow pattern identification,
it does not use equal weights to identify each part of the
entire flow pattern. The CNN network has different identific-
ation weights for each area of the flow pattern, and the pos-
ition of large weights (i.e. hotspots) has the greatest effect
on flow pattern identification. Therefore, this paper proposes
the EARM, which extracts effective information on the flow
pattern of the hotspot area of the flow pattern heatmap,
combines the identification mechanism of the CNN model
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Figure 5. Heatmap of the ECT image downstream of the venturi tube.

with the physical principle of ECT sensor image reconstruc-
tion, improves the ECT measurement model, and effectively
improves the flow pattern identification accuracy of the CNN
network. Algorithm 1 shows the flowchart of the EARM
algorithm.

As shown in Algorithm 1, our main process is as follows:

• cap represents a group of capacitance values collected
through experiments, andwork_con represents the working
condition corresponding to the capacitances. First determ-
ine that the work_con corresponding to this set of capacit-
ances meets the Work_Condition distribution in table 1.

• ECT_img represents the flow pattern obtained through
the LBP image reconstruction algorithm. Use the LBP
algorithm to reconstruct the cap to get the ECT_img, use
the Grad_cam model to get the Heatmap of ECT_img, and
get the hotspot through the Heatmap.

• Based on the sensitivity distribution of the ECT sensor, the
effective capacitance of the cap is extracted through hotspot
to obtain cap_new.

• Based on the expansion and deletion of hotspot areas,
two sets of contrast experiments were designed to obtain
cap_contrast1 and cap_contrast2.

• Use the CNN model to compare the prediction accuracy of
the three sets of capacitances of cap_new, cap_contrast1
and cap_contrast2, and select the set of capacitances with
the highest prediction accuracy as Cap_Best.

The effective capacitance of the ECT sensor can be
obtained through the EARM algorithm. Using the effective
capacitance to predict the oil–gas two-phase flow parameters
can improve the flow rate prediction accuracy.

Eight electrode plates are evenly distributed inside the
tube wall of the ECT sensor, and any two pairs of electrode
plates form an electrode pair. When one of the electrodes is
excited and the other electrode is maintained at zero poten-
tial, a capacitance is formed and capacitance data are gen-
erated. The number of independent capacitors measured by
the ECT sensor is: N(N− 1)/2. Therefore, the eight-electrode
ECT sensor generates 28 sets of independent capacitance data.
Based on the capacitance data measured by the ECT sensor,
the image reconstruction algorithm is used to obtain the flow
pattern. The change in capacitance between each pair of elec-
trode plates has the greatest influence on the flow pattern of
the connection area of the two electrode plates [30]. Figure 6
shows the sensitivity distribution of electrode plates with dif-
ferent intervals.

Figure 6 shows the typical sensitivity distribution of the
ECT sensor, and the value on the right side of the color chart
shows the sensitivity value. It can be seen from figure 6 that
the electrode plate combinations with different intervals have
different influence areas on the flow pattern. The combina-
tion of adjacent electrode plates has the greatest impact on the
area near the wall of the tube, and basically has no effect on
the central area. The sub-adjacent electrode plate combination
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Figure 6. Sensitivity distribution of eight-electrode ECT sensor. (a)
Sensitivity distribution of adjacent electrode pairs. (b) Sensitivity
distribution of single-spaced electrode pairs. (c) Sensitivity
distribution of double-spaced electrode pairs. (d) Sensitivity
distribution of opposite electrode pairs.

has the greatest influence on the sub-center area. The opposite
electrode plate combination has the greatest influence on the
central area and the least influence on the tube wall area. Over-
all, the combination of electrode plates with different intervals
contributes the most to the flow pattern in the connecting area
of the two electrode plates, and has less impact on other areas
[30]. Therefore, based on this phenomenon, combinedwith the
hotspot area distribution of the flow pattern heatmap calculated
above, we extract the independent capacitance data of the hot-
spot area, and compare the capacitance value extracted based
on the heatmap hotspot with the original capacitance value of
the ECT sensor. The important influence of CNN network flow
pattern identification visualization on ECT image reconstruc-
tion and oil–gas two-phase flow measurement is highlighted.
Figure 7 shows the capacitance distribution of the ECT sensor
cross-section.

In figure 7, the eight vertices represent the eight electrode
plates inside the ECT sensor. The area connected between
every two electrode plates represents the area with the largest
sensitivity distribution of this inter-electrode capacitance in
the measuring region. That is, the connection area of every
two electrode plates is the area where the electrode contrib-
utes most to the flow pattern.

In different areas of the flow pattern, different electrode
pairs need to be used for imaging. The eight-electrode ECT
sensor produces a total of 28 sets of capacitance values, which
are carried out in the order of electrode pairs 1–2, 1–3, 1–4, ...,
2–3, 2–4, ..., 7–8 sort. It can be seen from figure 4 that when
the gas flow rate is small (20 m3 h−1), the hotspots of the heat-
map are mainly distributed on the right side of the flow pattern.
Figure 8 shows the capacitance distribution of the ECT sensor
under the condition of gas flow rate of 20 m3 h−1.

Figure 7. Schematic diagram of capacitance distribution of ECT
sensor cross-section.

Figure 8. Capacitance distribution of ECT sensor under small gas
flow rate.

Figure 8 shows the distribution of effective electrode pairs
in the ECT sensor under the condition of gas flow rate of
20 m3 h−1. The red line indicates the electrode pair that con-
tributes the most to the flow pattern under this gas flow rate.
The gray line indicates the electrode pair that does not con-
tribute much to the flow pattern under this gas flow rate. The
color in the grid of figure 8 represents the attention degree of
CNN network flow pattern identification, and the darker the
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Figure 9. Capacitance distribution of ECT sensor under medium
gas flow rate.

color in the grid, the higher the importance of the area for CNN
network flow pattern identification. Therefore, when using the
ECT sensor to measure the oil–gas two-phase flow paramet-
ers under this gas flow rate condition, it is not necessary to
use all 28 sets of capacitance values generated by the ECT
sensor, and only the capacitance values of the hotspot distri-
bution area of the heatmap can be used for measuring the two-
phase flow parameters. Under the condition that the gas flow
rate is 20 m3 h−1, the ECT sensor electrode pairs to be used
are 3–4, 3–5, 3–6, 3–7, 4–5, 4–6, 4–7, 5–6, 5–6, 5–7, 6–7.
By using the 10 extracted sets of capacitance values instead
of the original 28 sets of capacitance values, combining the
visualization results of CNN network flow pattern identifica-
tion with the ECT image reconstruction principle, the charac-
teristics used for oil–gas two-phase flow parameter measure-
ment are more significant, and increase parameter prediction
accuracy.

Figures 9 and 10, respectively, show the effective electrode
pair distribution of the ECT sensor under the conditions of
medium gas flow rate and large gas flow rate in the oil–gas
two-phase flow.

It can be seen from figure 9 that under the condition of gas
flow rate of 50 m3 h−1, the hotspots of the heatmap are mainly
distributed on the upper side of the flow pattern. According
to the hotspot distribution of the flow pattern heatmap, under
the condition of medium gas flow rate, the electrode pairs of
the ECT sensor to be used are 5–6, 5–7, 5–8, 6–7, 6–8, 7–
8. Six sets of effective capacitance values are extracted from
the hotspot distribution area to replace the 28 sets of original
capacitance values of the ECT sensor to measure the oil–gas
two-phase flow parameters.

Figure 10. Capacitance distribution of ECT sensor under large gas
flow rate.

It can be seen from figure 10 that when the gas flow rate is
90 and 150m3 h−1, the hotspots of the heatmap are mainly dis-
tributed on the upper left side of the flow pattern. According to
the hotspot distribution of the flow pattern heatmap, under the
condition of large gas flow rate, the electrode pairs of the ECT
sensor to be used are 1–2, 1–6, 1–7, 1–8, 2–6, 2–7, 2–8, 6–7,
6–8, 7–8. Therefore, under the conditions of gas flow rate of
90 and 150 m3 h−1, the oil–gas two-phase flow parameters are
predicted by extracting 10 sets of effective capacitance values
instead of the original 28 sets of capacitance values.

Figures 8–10, respectively, show the distribution of effect-
ive electrode pairs of the flow pattern heatmap upstream of the
venturi tube under different gas flow rate conditions. During
the collection of experimental data, the capacitance values of
the ECT sensors upstream and downstream of the venturi tube
are collected to verify the generality of the proposed EARM
algorithm. It can be seen from the hotspot distribution of the
flow pattern heatmap downstream of the venturi tube shown in
figure 5 that the hotspot distribution is mainly divided into two
cases. When the gas flow rate is small (20 m3 h−1), the hot-
spots of the flow pattern heatmap are mainly distributed on the
left side of the flow pattern. As the gas flow rate increases, the
hotspots of the flow pattern heatmap are stably distributed on
the upper left side of the flow pattern. Figures 11–12, respect-
ively, show the effective capacitance distribution of the ECT
sensor downstream of the venturi tube under the conditions of
small gas flow rate and large gas flow rate.

As can be seen from figures 11 and 12, for the capacitance
data of the ECT sensor downstream of the venturi tube, when
the gas flow rate is 20 m3 h−1, 10 sets of capacitance values 1–
2, 1–3, 1–4, 1–8, 2–3, 2–4, 2–8, 3–4, 4–8 are selected instead

9
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Figure 11. Capacitance distribution of the ECT sensor with small
gas flow rate downstream of the venturi tube.

Figure 12. Capacitance distribution of the ECT sensor with large
gas flow rate downstream of the venturi tube.

of the original 28 sets of capacitance values generated by the
ECT sensor tomeasure the oil–gas two-phase flow parameters.
In the case of gas flow rates of 50, 90, 140 m3 h−1, we select
six sets of capacitance values 1–6, 1–7, 1–8, 6–7, 6–8, 7–8
instead of the original 28 sets of capacitance values to measure
the oil–gas two-phase flow parameters.

This article proposes an EARM algorithm. The Grad-CAM
model is used to visually analyze the CNN network flow pat-
tern identification, and the main focus of CNN network flow
pattern identification is searched by the flow pattern heatmap.
Combined with the principle of ECT sensor image reconstruc-
tion, according to the hotspot distribution of the flow pattern
heatmap, we find the flow pattern area that contributes the
most to the flow pattern identification of the CNN network,
and find the electrode pair distribution corresponding to the
flow pattern area. Finally, the EARM algorithm is proposed,
and the distribution of electrode pairs in the key identification
area is reversed according to the flow pattern of the key identi-
fication area, which improves the characteristic quality of the
ECT sensor oil–gas two-phase flow parameter measurement,
making the characteristics used for parameter measurement
more prominent. Therefore, the accuracy of the measurement
of oil–gas two-phase flow parameters is improved. Section 5
introduces the experimental results of oil–gas two-phase flow
measurement by the EARM algorithm, and designs a control
group experiment to compare with the measurement results of
the EARM algorithm, and finally explores the relevant factors
that may affect the hotspot distribution of the flow pattern heat-
map.

5. Results and analysis

5.1. EARM algorithm prediction results

Section 4 introduces the ECT sensor electrode pairs that need
to be extracted when using the EARM algorithm to meas-
ure the oil–gas two-phase flow parameters under different gas
flow rate conditions. In this experiment, the capacitance value
obtained by the EARM algorithm and the original 28 capacit-
ance values of the ECT sensor are compared and analyzed.
Through the Lenet-5 model in the CNN network, the oil–
gas two-phase flow parameters are measured according to the
capacitance value obtained by the EARM algorithm and the
original 28 capacitance values of the ECT sensor, and the
measurement results under different gas flow rate conditions
are analyzed.

5.1.1. Measurement results of the ECT sensor upstream of the
venturi tube. Figure 13 respectively shows the measurement
accuracy of the oil flow rate and gas flow rate of the oil–gas
two-phase flow under the conditions of small, medium, and
large gas flow rate in the ECT sensor upstream of the venturi
tube.

According to the experimental results in table 1, the pre-
dicted relative errors under different gas flow rate conditions
are measured. The abscissa in figure 13 represents differ-
ent experimental working conditions, and the ordinate rep-
resents the average predicted relative error under different
experimental working conditions. There are 8000 sets of train-
ing data and 2000 sets of test data under each experimental
working condition, respectively. Each vertex on the curve in
figure 13 represents the average prediction relative error under
this experimental working condition, which can be credible.
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Figure 13. The relative error of the capacitance data prediction of the ECT sensor upstream of the venturi tube. (a) The prediction results of
28 original capacitance values and the EARM algorithm under small gas flow rate. (b) The prediction results of 28 original capacitance
values and the EARM algorithm under medium gas flow rate. (c) The prediction results of 28 original capacitance values and the EARM
algorithm under large gas flow rate.

The following figures 14–16 have the same physical meaning.
As can be seen from figure 13, relative to the prediction effect
of the original 28 capacitance values of the ECT sensor, the
flow rate prediction relative error of the EARM algorithm is
significantly reduced, and the relative error reduction effect of
the gas flow rate prediction is more significant. Under the con-
dition of small gas flow rate, the prediction improvement effect
of the EARM algorithm is more significant, where the relative
error of gas flow rate prediction is less than 5%, and the rel-
ative error of oil flow rate prediction is less than 15%. It can
be seen that the EARM algorithm can obtain the key flow pat-
tern area of the CNN network flow pattern identification. This
method can effectively improve the feature quality of oil–gas
two-phase flow prediction, and greatly improve the prediction
accuracy of the oil flow rate and gas flow rate.

The following analyzes the improvement effect of the capa-
citance value extracted by the EARM algorithm relative to
the original 28 capacitance measurement results of ECT under
different gas flow rate conditions. By comparing the average
parameter lifting index (APLI) of the EARM algorithm with
respect to the original 28 capacitance value prediction effects,
the parameter prediction improvement effect of the EARM
algorithm under different gas flow rate conditions is compared.
The calculation method of the APLI is shown in formula (5).

APLI=mean(|REoriginal −REEARM|/REoriginal) (5)

Among them, APLI represents the average parameter lift-
ing index of the EARM algorithm, REoriginal represents the rel-
ative error of the parameter prediction using the original 28
capacitances, and REEARM represents the relative error of the
parameter prediction using the EARM algorithm.

Table 2 shows the APLI of the oil–gas two-phase flow para-
meters predicted by the EARM algorithm under different gas
flow rate conditions.

It can be seen from table 2 that by comparing the APLI
under different gas flow rate conditions, for the capacitance
data of the ECT sensor upstream of the venturi tube, under the
condition of small gas flow rate, the APLI of the oil flow rate
and gas flow rate is the highest, indicating that the parameter
prediction effect of the EARM algorithm is the best under the
condition of small gas flow rate. For all gas flow rate condi-
tions, the APLI of gas flow rate prediction is higher than that

of oil flow rate prediction, indicating that the EARM algorithm
has a more obvious effect on gas flow rate prediction.

5.1.2. Measurement results of the ECT sensor downstream of
the venturi tube. Compared with the flow pattern heatmap
analysis results of the ECT sensor upstream of the venturi tube,
the hotspot distribution of the flow pattern heatmap down-
stream of the venturi tube is more concentrated. Figure 14
respectively shows the measurement accuracy of the oil flow
rate and gas flow rate of the oil–gas two-phase flow under the
conditions of small gas flow rate and large gas flow rate in the
ECT sensor downstream of the venturi tube.

Figure 14 shows the relative error of the capacitance data
prediction of the ECT sensor downstream of the venturi tube
under different gas flow rate conditions. As can be seen from
figure 14, for the capacitance data of the ECT sensor down-
stream of the venturi tube, the prediction relative error of the
EARM algorithm relative to the original 28 capacitance val-
ues is significantly improved; among them, the improvement
effect of gas flow rate prediction is more obvious. This phe-
nomenon proves the universality of the EARM algorithm. The
prediction accuracy of oil–gas two-phase flow at small gas
flow rate is better than that at large gas flow rate. Under the
condition of small gas flow rate, more than 90% of the predic-
tion accuracy of the gas flow rate is less than 5% andmore than
90% of the prediction accuracy of the oil flow rate is less than
15%. For the capacitance values of the ECT sensors upstream
and downstream of the venturi tube, the prediction accuracy
of the oil flow rate and gas flow rate of the oil–gas two-phase
flow by the EARM algorithm has been significantly improved.

The following is an analysis of the APLI of the prediction
effect of the EARM algorithm relative to the original 28 capa-
citance values. Table 3 shows the APLI of the ECT sensor
capacitance data downstream of the venturi tube under the con-
ditions of different gas flow rate to predict the parameters of
the oil–gas two-phase flow.

It can be seen from table 3 that for the capacitance data
of the ECT sensor downstream of the venturi tube, under the
condition of small gas flow rate, the APLI of gas flow rate
prediction is higher. Under the condition of large gas flow
rate, the APLI of oil flow rate prediction is higher. It shows
that under the condition of small gas flow rate, the effect
of the EARM algorithm on gas flow rate prediction is more
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Table 2. EARM algorithm analysis table of APLI of upstream ECT sensor.

Parameter
Different situation Small gas flow rate Medium gas flow rate Large gas flow rate

APLIoil 0.6104 0.4260 0.5472
APLIgas 0.9469 0.8071 0.7625

Figure 14. The relative error of the capacitance data prediction of the ECT sensor downstream of the venturi tube. (a) The prediction results
of 28 original capacitance values and the EARM algorithm under small gas flow rate. (b) The prediction results of 28 original capacitance
values and the EARM algorithm under large gas flow rate.

Table 3. EARM algorithm analysis table of APLI of downstream ECT sensor.

Parameter
Different situation Small gas flow rate Large gas flow rate

APLIoil 0.2877 0.5241
APLIgas 0.9305 0.3672

obvious, and under the condition of large gas flow rate, the
effect of EARM algorithm on oil flow rate prediction is more
obvious.

The EARM algorithm is used to analyze the capacit-
ance data of the ECT sensors upstream and downstream of
the venturi tube. Compared with the original 28 capacit-
ance values for parameter prediction, the EARM algorithm
has a better improvement effect on the measurement of
oil–gas two-phase flow parameters. This shows that the
CNN network visualization method combined with the ECT
image reconstruction principle for comprehensive analysis
is effective. Deeply mining the relationship between the
CNN network and the ECT image reconstruction phys-
ical principles has a significant improvement effect on the
parameter measurement of oil–gas two-phase flow. This
phenomenon can also be used in the research of more
multiphase flow fields such as ECT image reconstruc-
tion, parameter measurement, flow pattern identification and
so on.

5.2. Experimental prediction results of the control group

In order to verify the measurement performance of the EARM
algorithm, this paper compares the experimental results
through the control group experiment. The EARM algorithm
uses the CNN and Grad-CAM model to extract the hotspots

of the flow pattern heatmap, so as to find the most effective
flow pattern area that affects the flow pattern identification, and
reversemapping to obtain the capacitance value corresponding
to the flow pattern area. In the control group experiment, this
paper uses the capacitance data that doe not completely cover
the flow pattern hotspot area (control group 1) and the capa-
citance data that exceed the flow pattern hotspot area (control
group 2) as the control groups, explores the prediction results
of these two sets of capacitance data, and compares the meas-
urement performance of the EARM algorithm.

Based on the prediction results of section 5.1, it can be seen
that the flow patterns upstream and downstream of the venturi
tube have better prediction results under the EARM algorithm,
and the prediction trends are the same. Therefore, in the con-
trol group experiment, we only analyzed the flow pattern data
upstream of the venturi tube. Figure 15 shows the prediction
results of control group 1 under different gas flow rate condi-
tions.

Control group 1 is an experimental group using capacit-
ance data that doe not completely cover the hotspot area of
the flow pattern. It can be seen from the comparison results
of the relative error between control group 1 and the EARM
algorithm test group that the prediction results of the oil–gas
two-phase flow parameters are inferior to the prediction results
of the flow pattern hotspot area. However, the prediction res-
ults of the oil–gas two-phase flow parameters of control group
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Figure 15. Relative error of control group 1 experiments. (a) Predicted results of comparative experiments under small gas flow rate. (b)
Predicted results of comparative experiments under medium gas flow rate. (c) Predicted results of comparative experiments under large gas
flow rate.

Figure 16. Relative error of control group 2 experiments. (a) Predicted results of comparative experiments under small gas flow rate. (b)
Predicted results of comparative experiments under medium gas flow rate. (c) Predicted results of comparative experiments under large gas
flow rate.

1 are better than those using the original 28 capacitance values,
which shows that the extraction of more critical information
of the flow pattern to a certain extent is effective for the pre-
diction of oil–gas two-phase flow parameters. In addition, the
effectiveness of the extracted key information determines the
improvement degree of the oil–gas two-phase flow parameter
prediction effect. The experimental results of control group 2
are analyzed below. Figure 16 shows the prediction results of
control group 2 under different gas flow rate conditions.

Control group 2 is an experimental group using capacit-
ance data exceeding the flow pattern hotspot area. It can be
seen from the comparison results of the relative errors between
control group 2 and the EARM algorithm test group that for
the capacitance data that exceeds the flow pattern hotspot area,
the prediction results of the oil–gas two-phase flow parameters
are inferior to the prediction results of the flow pattern hotspot
area. As with control group 1, the prediction result of control
group 2 is also better than the flow prediction results using
the original 28 capacitance values. The experimental results
of the two control groups can prove that the capacitance value
of the effective area of the flow pattern extracted by the EARM
algorithm is reasonable. The hotspot area of the flow pattern
extracted beyond this area or less than this area will affect the
oil–gas two-phase flow parameter prediction results. However,
the extraction of effective flow pattern information through the
CNN network visualization algorithmwill improve the predic-
tion effect of oil–gas two-phase flow parameters. The follow-
ing will analyze and explore the factors that may affect the
hotspot distribution of the flow pattern heatmap.

5.3. Research on related factors of hotspot distribution

Under different gas flow rate conditions, the distribution of
hotspots in the ECT sensor flow pattern heatmap is different.
According to the distribution of hotspots in the heatmap, com-
bined with the principle of ECT image reconstruction, this
paper explores the factors that may affect the distribution of
hotspots in flow patterns. It can be seen from figures 4 and 5
that in the case of small gas flow rate, the hotspot distribution
of the flow pattern heatmap is not stable. As the gas flow rate
increases, the hotspots of the flow pattern heatmap are stable,
and the hotspots of the flow pattern are distributed on the upper
side or the upper left side of the flow pattern. According to this
phenomenon, we can infer that the focus of the CNN network
for flow pattern identification is concentrated in the area of
gas distribution in the flow pattern. The flow rate and distribu-
tion of gas in the oil–gas two-phase flow play a vital role in the
CNN network to determine the flow pattern. When judging the
annular flow, there is always oil in the lower area of the flow
pattern. Therefore, judging whether there is oil on the upper
side of the flow pattern and whether the oil in the flow pattern
forms a ring is an important basis for CNN network flow pat-
tern identification. For stratified flow and slug flow, the hot-
spots of the flow pattern heatmap are mainly located at the
boundary between the oil phase and the gas phase, indicating
that the gas flow rate and position distribution are also themain
concerns of the CNN network flow pattern identification. The
above analysis is just a qualitative analysis of the influencing
factors of hotspot distribution of flow pattern heatmaps based
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on experimental phenomena. In future experimental work, we
will conduct a quantitative analysis of the specific causes of
the hotspot distribution of the flow pattern heatmap, and prove
the reasons for the different hotspot distributions of the flow
pattern heatmap under different flow rates.

6. Conclusion

In this paper, we combine the CNN network visualization
with the physical principles of ECT image reconstruction,
and propose an EARM algorithm for extracting key flow pat-
tern information for oil- gas two-phase flow pattern identifica-
tion. The flow pattern heatmap is obtained by the Grad-CAM
method. By analyzing the hotspot information distribution of
the flow pattern heatmap, the main flow pattern identification
area of CNN network flow pattern identification is found, and
the effective capacitance value corresponding to the flow pat-
tern position is extracted according to the image reconstruction
principle. By using the EARM algorithm, the predicted results
of the effective capacitance value extracted are compared with
the predicted results of the ECT sensor original capacitance
value. The EARM algorithm effectively extracts the effective
capacitance information of the flow pattern identification, and
the measurement result of the oil–gas two-phase flow para-
meters have been significantly improved by more than 50%
on average. We also designed two sets of control group exper-
iments in this study, which proved that the range of the extrac-
ted key flow pattern area is reasonable. This paper qualitatively
analyzes the reasons that may affect the hotspot distribution of
the flow pattern heatmap.

In future research, wewill further quantitatively analyze the
reasons for the hotspot distribution of the flow pattern heat-
map, and explore the specific reasons for the different hotspot
distributions of the flow pattern heatmap at different flow rates.
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