DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection
(KDD 2023 research track)

Yiyuan Yang1\textdagger, Chaoli Zhang2\textdagger, Tian Zhou2\textdagger, Qingsong Wen2 \textdagger, Liang Sun2
1Department of Computer Science, University of Oxford, 2DAMO Academy, Alibaba Group
yiyuan.yang@cs.ox.ac.uk, \{chaoli.zcl, tian.zt, qingsong.wen, liang.sun\}@alibaba-inc.com

\textdagger The first three authors contributed equally to this research.
\textdagger Work done as an intern in DAMO Academy, Alibaba Group. He is now with the Department of Computer Science, University of Oxford, OX1 3SA, Oxford, UK.
\textdagger Corresponding author
✓ Background: Time Series Anomaly Detection

Detecting the abnormal time-step from the original time-series.

Extracting useful information from the time-series to ensure security, avoid financial loss and so on.
✓ Challenges: Time Series Anomaly Detection

- **Lack of Labeled Data**: Anomalies are usually rare without many labels. Systems are in steady state in majority of cases.
- **Imbalance**: The number of anomalies is much smaller than the normal one. For example, in the financial system.
- **Noise Interference**: Time-series data may be affected by noise that may mask the true anomaly signal.
- **Complex Patterns**: Typical anomalies are often complex (e.g., wind turbines operate in different modes and conditions).
- **Multi-dimensional Features**: Models should consider temporal, multidimensional and non-stationary characteristics.
- **Explanatory and Interpretable**: In some application scenarios, explanatory and interpretable results for anomaly detection are needed to better understand why an anomaly was flagged and to be able to take action accordingly.

Anomaly detection based on unsupervised learning (learning without labeled data)

- time series data → Per timestamp feature mining → Anomaly detection, evaluation at each timestamp
✓ Challenges of time series anomaly detection

Illustration of the challenges: 1, Numerous complex patterns in time series; 2 Different types of anomalies

✓ Related work: previous SOTA methods vs. DCdetector

(a) Reconstruction-based Approach
- Reconstruction
 - Representation Neural Network
 - Time Series
- Minimize Discrepancy
- Maximize Discrepancy
- Gaussian Kernel
- Grad
- \(L_{rec} = \| x - \hat{x} \|_2^2 \)
- \(L_{AT} = \| x - \hat{x} \|_2^2 - \lambda \| \text{AssDis}(P,S;x) \|_1 \)
- \(L_{DCdetector} = \textbf{Distance}(R_1(x), R_2(x)) \)

(b) Anomaly Transformer
- Minimize Discrepancy
- Maximize Discrepancy
- Time Series
- \(\lambda \times \text{AssDis}(P,S;x) \)

(c) DCdetector
- Representation Similarity
- Representation Neural Network
- Time Series

Reconstructed-based problem: The raw time series has a mixture of normalities and anomalies with noise. So it is difficult to train a high quality encoder for reconstruction based models.

Highlight: DCdetector is concise with pure contrastive structure without reconstruction and minmax learning.
 ✓ **Method: DCdetector’s Intuition**

An intuition:

- Observation: normal points are closely related to other adjacent sample points, while abnormal points are discrete from others.
- Design Principle: by constructing different representations (patch-wise and in-patch) between the sample points, if the similarity of the different representations is high, it means that they are normal points.

Normal point: **Strong** relation between adjacent data

Anomaly: **Weak** relation between adjacent data

Differentiation by similarity of the different representations
✓ Method: DCdetector's Framework: 4 components

(a) Backbone
- Output Anomaly Score and Detection
- Representation Discrepancy
- Patch-wise Upsample
- Point-wise Upsample
- Patch-wise Representation
- In-patch Representation
- Channel Independence + Patching
- Instance Normalization
- Input Multivariate Time-series

(b) Dual Attention Contrastive Structure
- Grad
- Similarity
- Grad
- Avg
- Patch-wise Attention
- Point-wise Attention
- Patch-wise Multi-head Attention
- In-patch Multi-head Attention
- Patch-wise Embedding
- In-patch Embedding

(c) Dual Attention
- Patch-wise Upsample
- Concat
- Scale Dot-product Attention
- Linear
- Scale Dot-product Attention
- Linear
- In-patch Upsample

Legend:
- Forward Process
- Dual Attention Contrastive Structure
- Representation Discrepancy
- Anomaly Criterion
✓ Method: DCdetector's Framework - Forward Process (1/4)

Instance normalization (tackle non-stationarity problem)

Patching and channel independence (tackle temporal dependency and multidimensional problems)
Method: DCdetector's Framework – Dual Attention Contrastive Structure (2/4)

- Two branches as permutated multi-view representations:
 - **Patch-wise representation**: Attention scores between different patches
 - **In-patch representation**: Attention scores of internal patch
 - **Asymmetric design**: avoid model collapse and trivial solution in

- Inductive bias: normal points can maintain their representation under permutations while the anomalies can not

\(\mathcal{L}_P \{ \mathcal{P}, \mathcal{N}; \mathcal{X} \} = \sum KL(\mathcal{P}, \text{Stopgrad}(\mathcal{N})) + KL(\text{Stopgrad}(\mathcal{N}), \mathcal{P}) \)

\(\mathcal{L}_N \{ \mathcal{P}, \mathcal{N}; \mathcal{X} \} = \sum KL(\mathcal{N}, \text{Stopgrad}(\mathcal{P})) + KL(\text{Stopgrad}(\mathcal{P}), \mathcal{N}) \)

\[\mathcal{L} = \frac{\mathcal{L}_N - \mathcal{L}_P}{\text{len}(N)} \]

Stop-gradient is used to train two branches asynchronously to avoid model collapse.

\(\mathcal{Y}_i = \begin{cases} 1: \text{anomaly} & \text{AnomalyScore}(X_i) \geq \delta \\ 0: \text{normal} & \text{AnomalyScore}(X_i) < \delta \end{cases} \)

AnomalyScore(\(\mathcal{X} \)) = \sum KL(\mathcal{P}, \text{Stopgrad}(\mathcal{N})) + KL(\mathcal{N}, \text{Stopgrad}(\mathcal{P})) \)
✓ Evaluation: Datasets and Implement (all open-sourced)

- Datasets & Baselines
 - 7+1 benchmarks, 26 baselines
- Evaluation Criteria
 - 10 metrics (F1, Affiliation, VUS)
- Performance on Parameter Sensitivity
- Visual Analysis
- Time-Cost and Memory Used

- One NVIDIA Tesla-V100 32GB GPU
- batch size to 128
- 3 epochs
- other hyper-parameters...
- Inference time less than 1s for all datasets
- All test scripts open source

Table 8: Details of benchmark datasets. AR (anomaly ratio) represents the abnormal proportion of the whole dataset.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Source</th>
<th>Dimension</th>
<th>Window</th>
<th>Patch Size</th>
<th>#Training</th>
<th>#Test (Labeled)</th>
<th>AR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM</td>
<td>eBay Server Machine</td>
<td>25</td>
<td>60</td>
<td>[1,3,5]</td>
<td>132,481</td>
<td>87,841</td>
<td>27.8</td>
</tr>
<tr>
<td>SMD</td>
<td>Internet Server Machine</td>
<td>38</td>
<td>105</td>
<td>[5,7]</td>
<td>708,405</td>
<td>708,420</td>
<td>4.2</td>
</tr>
<tr>
<td>SWaT</td>
<td>Infrastructure System</td>
<td>51</td>
<td>105</td>
<td>[3,5,7]</td>
<td>495,000</td>
<td>449,919</td>
<td>12.1</td>
</tr>
<tr>
<td>NIPS-TS-SWAN</td>
<td>Space (Solar) Weather</td>
<td>38</td>
<td>36</td>
<td>[1,3]</td>
<td>60,000</td>
<td>60,000</td>
<td>32.6</td>
</tr>
<tr>
<td>NIPS-TS-GECCO</td>
<td>Water Quality for IoT</td>
<td>9</td>
<td>90</td>
<td>[1,3,5]</td>
<td>69,260</td>
<td>69,261</td>
<td>1.1</td>
</tr>
<tr>
<td>UCR</td>
<td>Various Natural Sources</td>
<td>1</td>
<td>105</td>
<td>[3,5,7]</td>
<td>2,238,349</td>
<td>6,143,541</td>
<td>0.6</td>
</tr>
</tbody>
</table>

https://github.com/DAMO-DI-ML/KDD2023-DCdetector
Evaluation: Multivariate Dataset Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SMD</th>
<th>MSL</th>
<th>SMAP</th>
<th>SWaT</th>
<th>PSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>P</td>
<td>R</td>
<td>F1</td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>LOF</td>
<td>56.34</td>
<td>39.86</td>
<td>46.68</td>
<td>47.72</td>
<td>85.25</td>
</tr>
<tr>
<td>OCSVM</td>
<td>44.34</td>
<td>76.72</td>
<td>56.19</td>
<td>59.78</td>
<td>86.87</td>
</tr>
<tr>
<td>U-Time</td>
<td>65.95</td>
<td>74.75</td>
<td>70.07</td>
<td>57.20</td>
<td>71.66</td>
</tr>
<tr>
<td>IForest</td>
<td>42.31</td>
<td>73.29</td>
<td>53.64</td>
<td>53.94</td>
<td>86.54</td>
</tr>
<tr>
<td>DAGMM</td>
<td>67.30</td>
<td>49.89</td>
<td>57.30</td>
<td>89.60</td>
<td>63.93</td>
</tr>
<tr>
<td>ITAD</td>
<td>86.22</td>
<td>73.71</td>
<td>79.48</td>
<td>69.44</td>
<td>84.09</td>
</tr>
<tr>
<td>VAR</td>
<td>78.35</td>
<td>70.26</td>
<td>74.08</td>
<td>74.68</td>
<td>81.42</td>
</tr>
<tr>
<td>MMPCACD</td>
<td>71.20</td>
<td>79.28</td>
<td>75.02</td>
<td>81.42</td>
<td>61.31</td>
</tr>
<tr>
<td>CL-MPPCA</td>
<td>82.36</td>
<td>76.07</td>
<td>79.09</td>
<td>73.71</td>
<td>88.54</td>
</tr>
<tr>
<td>TS-CP2</td>
<td>87.42</td>
<td>66.25</td>
<td>75.38</td>
<td>86.45</td>
<td>68.48</td>
</tr>
<tr>
<td>Deep-SVDD</td>
<td>78.54</td>
<td>79.67</td>
<td>79.10</td>
<td>91.92</td>
<td>76.63</td>
</tr>
<tr>
<td>BOCPPD</td>
<td>70.9</td>
<td>82.04</td>
<td>76.07</td>
<td>80.32</td>
<td>87.20</td>
</tr>
<tr>
<td>LSTM-VAE</td>
<td>75.76</td>
<td>90.08</td>
<td>82.30</td>
<td>85.49</td>
<td>79.94</td>
</tr>
<tr>
<td>BeatGAN</td>
<td>72.90</td>
<td>84.09</td>
<td>78.10</td>
<td>89.75</td>
<td>85.42</td>
</tr>
<tr>
<td>LSTM</td>
<td>78.55</td>
<td>85.28</td>
<td>81.78</td>
<td>85.45</td>
<td>82.50</td>
</tr>
<tr>
<td>OmniAnomaly</td>
<td>83.68</td>
<td>86.82</td>
<td>85.22</td>
<td>89.02</td>
<td>86.37</td>
</tr>
<tr>
<td>InterFusion</td>
<td>87.02</td>
<td>85.43</td>
<td>86.22</td>
<td>81.28</td>
<td>92.70</td>
</tr>
<tr>
<td>THOC</td>
<td>79.76</td>
<td>90.95</td>
<td>84.99</td>
<td>88.45</td>
<td>90.97</td>
</tr>
<tr>
<td>AnomalyTrans</td>
<td>88.47</td>
<td>92.28</td>
<td>90.33</td>
<td>91.92</td>
<td>96.03</td>
</tr>
<tr>
<td>DCdetector</td>
<td>83.59</td>
<td>91.10</td>
<td>87.18</td>
<td>93.69</td>
<td>99.69</td>
</tr>
</tbody>
</table>

Bold and italic indicates the best and second best performance respectively.
✓ Evaluation: Other Dataset and Evaluation Criteria Results

Table 4: Multi-metrics results on NIPS-TS datasets. All results are in %, and the best ones are in Bold.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Acc</th>
<th>P</th>
<th>R</th>
<th>F1</th>
<th>Aff-P</th>
<th>Aff-R</th>
<th>R_A_R</th>
<th>R_A_P</th>
<th>V_ROC</th>
<th>V_PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPS-TS-SWAN</td>
<td>AnomalyTrans</td>
<td>84.57</td>
<td>90.71</td>
<td>47.43</td>
<td>62.29</td>
<td>58.45</td>
<td>9.49</td>
<td>86.42</td>
<td>93.26</td>
<td>84.81</td>
<td>92.00</td>
</tr>
<tr>
<td></td>
<td>DCdetector</td>
<td>85.94</td>
<td>95.48</td>
<td>59.55</td>
<td>73.35</td>
<td>50.48</td>
<td>5.63</td>
<td>88.06</td>
<td>94.71</td>
<td>86.25</td>
<td>93.50</td>
</tr>
<tr>
<td>NIPS-TS-GECCO</td>
<td>AnomalyTrans</td>
<td>98.03</td>
<td>25.65</td>
<td>28.48</td>
<td>26.99</td>
<td>49.23</td>
<td>81.20</td>
<td>56.35</td>
<td>22.53</td>
<td>55.45</td>
<td>21.71</td>
</tr>
<tr>
<td></td>
<td>DCdetector</td>
<td>98.56</td>
<td>38.25</td>
<td>59.73</td>
<td>46.63</td>
<td>50.05</td>
<td>88.55</td>
<td>62.95</td>
<td>34.17</td>
<td>62.41</td>
<td>33.67</td>
</tr>
</tbody>
</table>

Overall results on NIPS-TS datasets.

<table>
<thead>
<tr>
<th>Metric</th>
<th>NIPS-TS-GECCO</th>
<th>NIPS-TS-SWAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCSVM*</td>
<td>2.1</td>
<td>19.3</td>
</tr>
<tr>
<td>MatrixProfile</td>
<td>4.6</td>
<td>16.7</td>
</tr>
<tr>
<td>GBRT</td>
<td>17.5</td>
<td>44.7</td>
</tr>
<tr>
<td>LSTM-RNN</td>
<td>34.3</td>
<td>52.7</td>
</tr>
<tr>
<td>Autoregression</td>
<td>39.2</td>
<td>42.1</td>
</tr>
<tr>
<td>OCSVM</td>
<td>18.5</td>
<td>47.4</td>
</tr>
<tr>
<td>IForest*</td>
<td>39.2</td>
<td>40.6</td>
</tr>
<tr>
<td>AutoEncoder</td>
<td>42.4</td>
<td>49.7</td>
</tr>
<tr>
<td>AnomalyTrans</td>
<td>25.7</td>
<td>56.9</td>
</tr>
<tr>
<td>IForest</td>
<td>43.9</td>
<td>59.8</td>
</tr>
<tr>
<td>DCdetector</td>
<td>38.3</td>
<td>95.5</td>
</tr>
</tbody>
</table>

Overall results on univariate dataset.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>UCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>Acc</td>
</tr>
<tr>
<td>AnomalyTrans</td>
<td>99.49</td>
</tr>
<tr>
<td>DCdetector</td>
<td>99.51</td>
</tr>
</tbody>
</table>

Visualization: To Compare Anomaly Scores under Different Anomaly Types
Ablation Experiments and Parameter Sensitivity

- Window size
- Multi-scale size (patch size)
- Encoder layer number & Attention head number
- Two branches and single branch
- Anomaly threshold
- Loss function and Forward process
- Other model's parameter

(a) Window size
(b) Multi-scale size
(c) Encoder layer number
(d) Attention head number
(e) d_{model} of attention
✓ Conclusion of DCdetector

❖ Architecture:
 • A contrastive learning-based dual-branch attention structure

❖ Optimization:
 ▪ An effective loss function is designed based on the similarity of two branches
 ▪ Model is trained purely contrastively without reconstruction loss, reducing distractions from anomalies

❖ Performance:
 ▪ DCdetector achieves SOTA performance in 8 benchmarks with 10 metrics, compared with 26 baselines
Open-sourced Codes

https://github.com/DAMO-DI-ML/KDD2023-DCdetector

Get Start

1. Install Python 3.6, PyTorch >= 1.4.0.
2. Download data. You can obtain all benchmarks from Google Cloud. All the datasets are well pre-processed.
3. Train and evaluate. We provide the experiment scripts of all benchmarks under the folder `./scripts`. You can reproduce the experiment results as follows:

   ```bash
   bash ./scripts/SMD.sh
   bash ./scripts/MSL.sh
   bash ./scripts/SMAP.sh
   bash ./scripts/PSM.sh
   bash ./scripts/SWAT.sh
   bash ./scripts/NIPS_TS_Swan.sh
   bash ./scripts/NIPS_TS_Water.sh
   bash ./scripts/UCR.sh
   ```

 Also, some scripts of ablation experiments.

   ```bash
   bash ./scripts/Ablation_attention_head.sh
   bash ./scripts/Ablation_encoder_layer.sh
   bash ./scripts/Ablation_Multiscale.sh
   bash ./scripts/Ablation_Window_Size.sh
   ```

Code Description

There are ten files/folders in the source.

- `data_factory`: The preprocessing folder/file. All datasets preprocessing codes are here.
- `dataset`: The dataset folder, and you can download all datasets here.
- `main.py`: The main python file. You can adjustment all parameters in there.
- `metrics`: There is the evaluation metrics code folder, which includes VUC, affiliation precision/recall pair, and other common metrics. The details can be corresponding to paper's Section 4.2.
- `model`: DCdetector model folder. The details can be corresponding to paper's Section 3.
- `result`: In our code demo, we can automatically save the results and train processing log in this folder.
- `scripts`: All datasets and ablation experiments scripts. You can reproduce the experiment results as get start shown.
- `solver.py`: Another python file. The training, validation, and testing processing are all in there.
- `utils`: Other functions for data processing and model building.
- `img`: Images needed in readme.md.
- `requirements.txt`: Python packages needed to run this repo.
Thanks
Q&A

https://arxiv.org/abs/2306.10347
https://github.com/DAMO-DI-ML/KDD2023-DCdetector