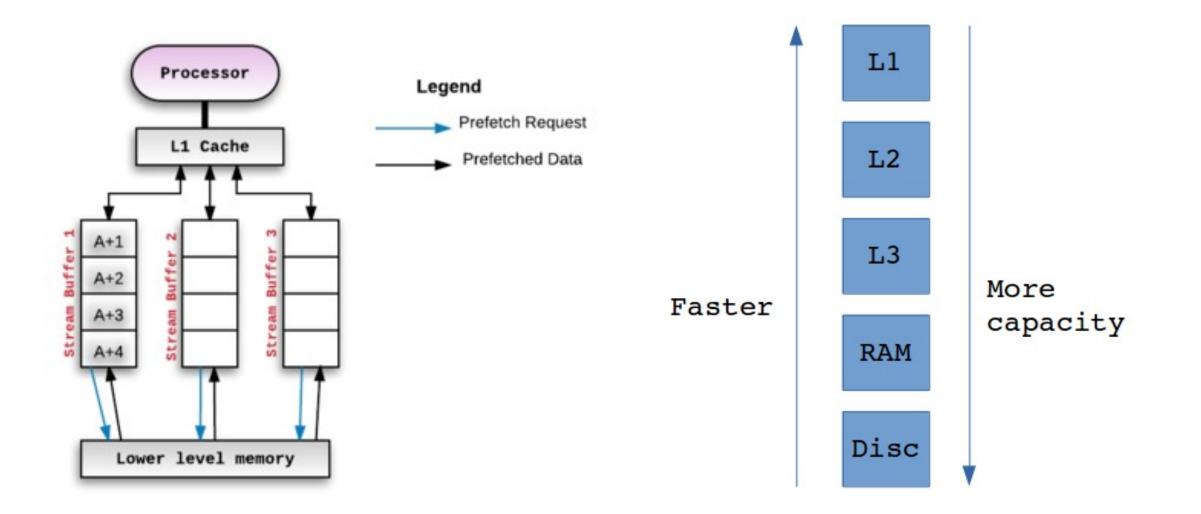


SGDP: A Stream-Graph Neural Network Based Data Prefetcher

Yiyuan Yang* University of Oxford Huawei Noah's Ark Lab Oxford, UK yiyuan.yang@cs.ox.ac.uk

Gang Hu *Huawei* Chengdu, China hugang27@huawei.com Rongshang Li* University of Sydney Huawei Noah's Ark Lab Sydney, Australia roli5128@uni.sydney.edu.au


Xing Li Huawei Noah's Ark Lab Hongkong, China li.xing2@huawei.com Qiquan Shi Huawei Noah's Ark Lab Huawei Shenzhen, China shiqiquan@huawei.com

Mingxuan Yuan Huawei Noah's Ark Lab Hongkong, China Yuan.Mingxuan@huawei.com Xijun Li MIRA Lab, USTC Huawei Noah's Ark Lab Shenzhen, China xijun.li@huawei.com

*Both authors contributed equally to this research. Work done as interns in Huawei Noah's Ark Lab

Background

Contribution

1. SGDP can accurately learn complex access patterns by capturing the relations of LBA deltas in each stream. The relations are represented by sequential connect matrices and full-connect matrices using graph structures.

2. SGDP is the first work that utilizes the stream-graph structure of the LBA delta in the data prefetching problem. Using gated graph neural networks and attention mechanisms, we extract and aggregate sequential and global information for better prefetching.

3. As a novel solution in the hybrid storage system, SGDP can be generalized to multiple variants by different stream construction methods, which further enhances its robustness and expands its application to various real-world scenarios.

4. SGDP outperforms SOTA by 6.21% on hit ratio, 7.00% on effective prefetching ratio, and speeds up inference time by 3.13X. It has been verified in commercial hybrid storage systems in the experimental phase and will be deployed in the future product series.

Preliminaries

$$\langle lba_i \rangle_{i=1}^n = \langle lba_1, lba_2, \dots, lba_n \rangle, \tag{1}$$
$$ld_i = lba_{i+1} - lba_i, \tag{2}$$
$$\langle ld_i \rangle_{i=1}^{n-1} = \langle ld_1, ld_2, \dots, ld_{n-1} \rangle. \tag{3}$$
$$\widehat{lba}_{n+1} = lba_n + \widehat{ld}_n. \tag{4}$$

Methodology

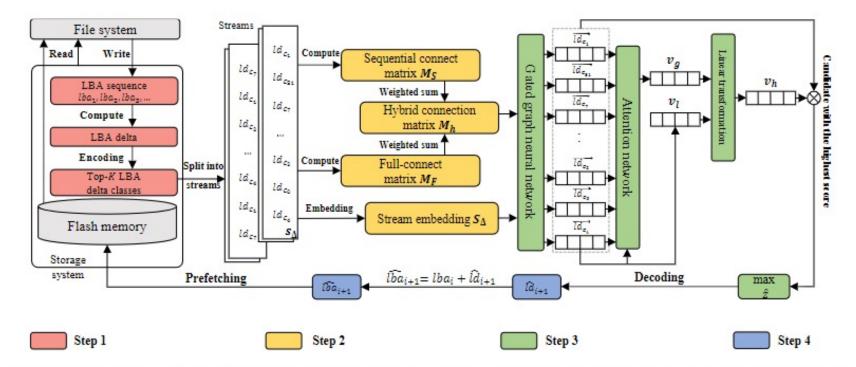
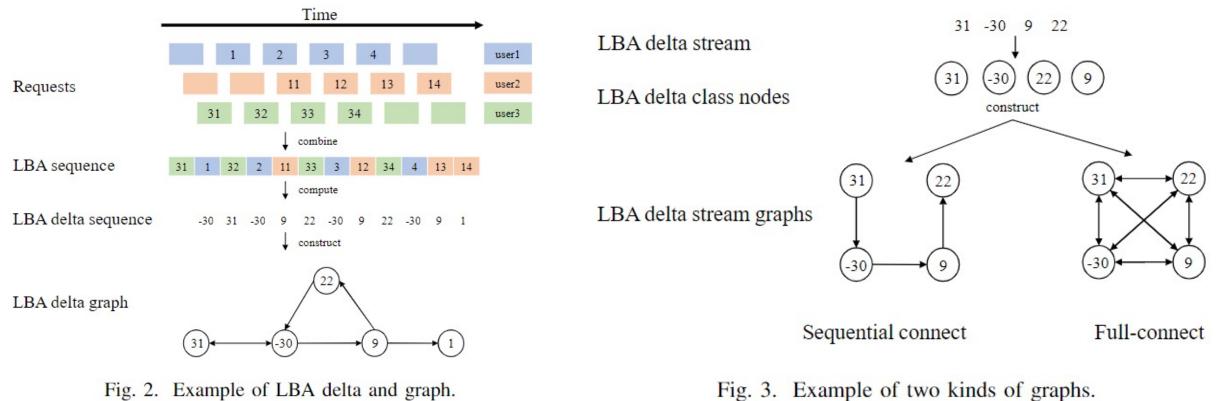
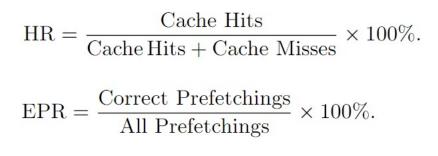


Fig. 1. The workflow of the SGDP framework. In Step 1, we compress the search space and reduce the learning complexity. In Step 2, we compute the hybrid connection matrix M_h with sequential and global information and embed the LBA delta stream into a matrix S_{Δ} . In Step 3, using gated graph neural networks to update the latent node vectors. Each stream is represented as the combination of the local preference v_l and global interaction v_g by an attention network. In Step 4, we predict the candidate with the highest score and decode it to get the next accessed LBA for prefetching. This framework corresponds to the four steps of Algorithm 1.

Methodology




Fig. 2. Example of LBA delta and graph.

Experimental settings

TABLE I
DATASETS DESCRIPTION

Source	Dataset	Length	Memory (GB)	Function	Sequential (%)
	hm_1	1.08×10^{6}	6.36	Hardware monitoring	39.9
	mds_0	4.23×10^{5}	8.48	Media server	65.2
MSRC	proj_0	1.17×10^{6}	4.056	Project directories	57.3
	prxy_0	4.03×10^{5}	5.18	Firewall/web proxy	37.6
	src1_2	1.15×10^{6}	2.0	Source control	58.5
	hw_1	1.39×10^{6}	930.29	hybrid storage system	55.8
HW	hw_2	2.58×10^{5}	600.46	hybrid storage system	95.1
	hw_3	1.73×10^{5}	902.22	hybrid storage system	43.7

Performance & result

	1			_					_															
Dataset			hy	v_1				hw_2					hw_3					hm_1						
Metric		HR@N	9	EPR@N		HR@N			EPR@N		HR@N			EPR@N			HR@N			EPR@N				
Method	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000
No_pre Naïve Stride ARIMA Informer DeepPrefetcher Delta-LSTM SGDP	0.0 57.5 43.7 1.9 0.2 74.3 74.4 79.2	0.3 58.0 44.0 0.9 74.6 74.8 79.5	54.2 63.2 65.8 8.8 5.8 79.2 79.3 85.8	0.0 63.3 80.5 1.9 0.3 75.4 75.5 82.9	0.0 64.5 81.1 4.3 0.9 75.9 76.0 83.5	0.0 64.5 80.6 6.2 2.9 76.5 76.6 81.6	1.0 92.5 91.0 82.8 1.0 92.2 92.5 93.0	1.1 92.6 91.1 82.9 1.1 92.5 92.8 93.0	1.1 92.7 91.1 83.0 1.1 92.8 93.1 93.1	0.0 93.3 99.1 85.9 0.0 93.4 93.7 97.5	0.0 93.7 99.2 86.2 0.0 94.0 94.2 97.7	0.0 94.0 99.2 86.4 0.0 94.5 94.7 <u>97.8</u>	0.0 47.7 38.4 0.3 0.0 50.4 56.4 76.0	0.1 47.9 38.6 0.3 0.0 50.7 56.8 76.6	1.3 48.8 39.6 1.3 0.9 51.7 57.9 77.5	0.0 48.0 81.6 0.2 0.0 50.4 66.2 88.9	0.0 48.3 82.0 0.3 0.0 50.7 66.8 89.5	0.0 48.7 82.3 0.3 0.0 51.2 67.2 90.1	2.7 31.7 27.1 3.5 1.1 38.5 30.0 38.1	25.3 43.8 47.0 19.0 14.0 59.1 50.6 55.7	98.3 97.4 99.1 95.2 90.4 99.3 99.3 99.4	0.0 30.5 82.3 2.7 0.1 38.5 57.7 87.8	0.0 31.2 84.4 5.2 0.7 56.0 72.8 90.1	0.0 5.6 88.4 2.5 0.7 46.1 87.6 <u>86.2</u>
$SGDP_l$ $SGDP_p$	78.5 75.7	78.8 78.2	<u>84.9</u> 83.6	<u>82.1</u> 77.6	$\frac{82.7}{80.4}$	<u>80.6</u> 79.6	92.9 93.7	<u>93.1</u> 94.0	<u>93.2</u> 94.2	97.0 94.4	97.2 95.0	97.4 95.4	78.5 48.1	79.0 48.3	79.8 49.6	83.6 72.1	<u>84.2</u> 73.1	<u>84.7</u> 75.1	43.1 43.9	<u>61.4</u> 62.9	99.1 99.4	46.3 46.8	60.8 63.8	24.4 34.8
Dataset			md	ls_0					pro	oj_0					prx	y_0					SFC	1_2		
Metric		HR@N EPR@N				HR@N EPR@N			HR@N EPR@N				1	HR@N			EPR@N							
Method	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000	10	100	1000
No_pre Naïve Stride ARIMA Informer DeepPrefetcher Delta-LSTM SGDP	13.2 54.3 47.3 16.6 9.6 60.7 57.3 66.0	35.0 68.2 62.2 37.4 28.3 73.7 69.6 76.3 77.5	61.0 85.2 79.8 58.3 54.5 88.5 86.2 91.6 92.1 92.6	0.0 47.8 82.3 8.6 0.3 66.9 80.2 <u>80.2</u> <u>80.2</u>	0.0 51.1 90.6 9.2 1.2 77.5 <u>87.8</u> 87.0 73.9	0.0 52.2 89.8 12.0 5.2 83.3 <u>89.8</u> 88.4 79.6	6.1 61.1 51.0 12.9 3.9 72.6 62.3 73.4 75.5	28.7 70.1 61.1 33.5 19.8 79.1 69.1 78.5 81.1	35.2 74.3 65.4 39.3 34.7 82.8 73.3 82.1 84.6	0.0 58.7 82.5 12.0 0.1 75.0 84.3 <u>84.0</u> 79.8	0.0 59.7 88.1 10.1 0.5 78.6 86.2 <u>87.6</u> 83.6	0.0 60.8 88.3 10.4 2.3 81.5 87.4 <u>88.2</u> <u>85.6</u>	20.1 46.4 40.3 19.9 13.7 57.0 52.2 <u>62.2</u> <u>64.1</u>	40.7 64.3 56.5 42.2 32.1 70.2 64.2 73.2 76.5	48.8 72.7 63.8 52.3 46.9 77.4 71.3 79.9 83.0	0.0 35.1 69.6 6.5 0.0 63.5 <u>75.7</u> 76.3 65.7	0.0 38.5 <u>81.1</u> 7.2 0.0 70.4 79.3 83.3 74.3	0.0 40.9 <u>81.4</u> 8.2 0.2 73.9 80.9 84.1 78.4	3.9 60.5 48.3 14.6 1.7 74.5 70.0 75.4 76.3	34.8 73.0 63.8 42.0 22.5 82.9 79.6 83.1 83.9	48.2 80.8 73.4 54.8 45.3 89.0 86.2 88.8 89.4	0.0 59.9 81.0 19.5 0.0 76.2 77.5 82.5 81.5	0.0 63.1 89.6 17.7 0.1 80.9 81.3 <u>88.5</u> 87.4	0.0 66.3 92.0 19.2 0.6 87.0 87.2 <u>90.8</u> 89.3
SGDP ₁	66.1																							

TABLE II SINGLE-STEP RESULTS. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, THE SECOND ONES ARE <u>UNDERLINED</u>, N IS CACHE SIZE.

TABLE III

AVERAGE RESULTS OF MULTI-STEP PREFETCHING. THE RESULTS ARE IN PERCENTAGE, THE BEST RESULTS ARE IN BOLD, AND THE CACHE SIZE IS 100.

Metric		HR@100									EPR@100									
Step	1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
DeepPrefetcher	74.0	76.1	76.7	77.1	77.2	77.1	77.1	77.0	77.0	76.9	73.1	60.7	52.5	46.5	42.0	38.3	35.3	32.8	30.7	28.8
Delta-LSTM	70.2	74.9	77.1	78.0	78.5	78.9	79.3	79.6	79.8	80.0	81.5	72.3	65.9	60.6	56.3	52.6	49.5	46.8	44.5	42.3
$\begin{array}{c} \text{SGDP} \\ \text{SGDP}_l \\ \text{SGDP}_p \end{array}$	77.0	78.3	78.9	79.3	79.6	79.8	80.0	80.1	80.3	80.3	88.4	80.5	74.0	68.9	64.6	60.9	57.7	54.9	52.7	50.5
	78.9	80.7	81.4	81.8	82.2	82.4	82.5	82.6	82.7	82.7	80.5	70.2	62.9	57.5	53.1	49.6	46.6	44.0	41.8	39.8
	75.7	77.4	78.1	78.6	78.9	79.1	79.2	79.3	79.5	79.5	78.9	68.3	60.8	55.1	50.6	46.8	43.7	41.1	38.8	36.7

Performance & result

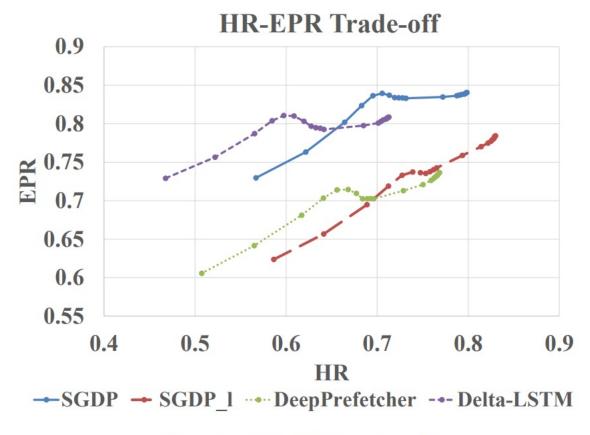


Fig. 4. HR-EPR trade-off.

TABLE IV The number of predictions inferred per second by learning-based methods.

Dataset Method	hw_1	hw_2	hw_3	hm_1	mds_0	proj_0	prxy_0	src1_2	avg
Delta-LSTM	89.4	87.4	94.5	92.4	90.7	91.5	88.4	95.1	91.2
DeepPrefetcher	208.2	154.5	194.2	160.1	248.4	178.4	187.9	249.6	197.7
SGDP	644.5	692.4	666.1	515.2	543.5	553.3	470.0	550.7	579.5
SGDP _l	634.7	686.9	614.7	500.1	651.4	663.9	526.3	670.7	618.6
$SGDP_p$	599.5	645.6	593.9	567.0	491.7	529.3	574.8	558.7	570.1

Many Thanks

Yiyuan Yang* University of Oxford Huawei Noah's Ark Lab Oxford, UK yiyuan.yang@cs.ox.ac.uk

Gang Hu *Huawei* Chengdu, China hugang27@huawei.com Rongshang Li* University of Sydney Huawei Noah's Ark Lab Sydney, Australia roli5128@uni.sydney.edu.au

Xing Li Huawei Noah's Ark Lab Hongkong, China li.xing2@huawei.com Qiquan Shi Huawei Noah's Ark Lab Huawei Shenzhen, China shiqiquan@huawei.com

Mingxuan Yuan Huawei Noah's Ark Lab Hongkong, China Yuan.Mingxuan@huawei.com Xijun Li MIRA Lab, USTC Huawei Noah's Ark Lab Shenzhen, China xijun.li@huawei.com