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ABSTRACT 
 
Oil and gas pipelines are known as the backbone of global 
energy, and securing their safety is crucial for energy supply. 
In this study, we utilized a novel machine learning method 
based on the spatiotemporal features of distributed optical 
fiber sensor signals to monitor the safety of oil and gas pipe-
lines in real time. Encouraging empirical results on a large 
amount of data collected from real sites confirmed that our 
model could accurately locate and identify the damage 
events of a pipeline in real time under strong noise and vari-
ous hardware conditions, and could effectively handle the 
signal drift problem. Furthermore, as a generalized tool, the 
proposed solution could be applied to other industrial in-
spection fields. Our codes and video demos are available at 
https://github.com/yyysjz1997/B-CNN_LGBM-PSEW.  
 

Index Terms— energy pipeline safety early warning, 
industrial distributed time–space signal processing, action 
recognition, bilinear convolutional neural network, lightgbm 
 

1. INTRODUCTION 
 
Oil and gas pipelines are widely used in the field of energy 
transportation because of their low cost, fast construction 
speed, and high safety. According to the latest statistics from 
Central Intelligence Agency (CIA), the total length of the 
global oil and gas pipelines is already 3.55 × 106 km, but at 
the same time, the accident rate in the United States, for ex-
ample, has reached 0.5 times per year per 1,000 km, and 
incidents may cause considerable indirect economic loss, 
environmental pollutions, energy crises, and personnel safety 
issues [1]. Unfortunately, the current approach to monitoring 
pipeline safety still focuses on inefficient and costly manual 
inspections. Consequently, the use of intelligent early warn-
ing algorithms to replace traditional manual monitoring is a 
technical issue that needs to be addressed in the oil and gas 
pipeline transmission industry. 

Most pipelines are buried underground to reduce their 
floor space, which makes it difficult to observe their safety 
directly. Moreover, the complex environment along the 
pipelines, most of which are laid through farmland, desert, 

hills, and other remote areas, is highly unsuitable for manual 
inspection. Therefore, researchers have attempted to use a 
redundant optical fiber, which is in the cable and uses for the 
company's internal communication and equipment data 
transmission, to achieve a distributed pipeline safety early 
warning (PSEW) function through the coherent optical time 
domain reflectometer (COTDR) technology without increas-
ing the operating cost [2, 3]. Although it has the advantages 
of good real-time performance and easy installation [4], its 
internal signal is susceptible to fluctuations due to environ-
mental influences. Concretely, it has strong noise, weak sig-
nals, signal jitter, and the problem of signal drift over time 
[5], which places higher demands on recognition algorithms 
based on optical fiber sensor signals. 

In this study, we attempted to fuse a bilinear convolu-
tional neural network (B-CNN) and a light gradient boosting 
machine (LightGBM) for PSEW based on distributed optical 
fiber sensor signal data from real sites. The contributions of 
this paper include the following: 

(a) We propose an approach that reanalyzes industrial 
distributed signals in both spatial and temporal domains and 
obtains excellent location and identification performance. 

(b) We have collected a large amount of signal data 
from long-distance pipelines that are already in service and 
built a database for model construction and evaluation. 

(c) We prove that our model is more adaptable to com-
plex environments and more scalable to hardware than other 
baselines under the premise of good real-time performance. 
 

2. RELATED WORKS 
 
PSEW based on distributed optical fiber remains largely 
unexplored. Previous studies primarily focused on the use of 
traditional signal processing and analog speech recognition 
algorithms to analyze signals. For example, Fouda et al. [6] 
presented an estimation method based on a frequency-
domain power spectrum, and Zhang et al. [7] applied mel-
frequency cepstral coefficients (MFCC) to extract features. 
Similarly, machine learning (ML) is also suitable for PSEW 
systems [8–13]. More specifically, Wu et al. [14] used hid-
den Markov models (HMMs) to judge the events. In addi-
tion, Yang et al. [15] and Shi et al. [16] proposed modified 
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convolutional neural networks, and Kong et al. [17] applied 
a probabilistic neural network to solve this problem. 

However, most of them only extract the features in the 
time domain and do not fuse the information of the spatio-
temporal dimensions. Furthermore, most of the work has not 
been verified for long-distance pipelines already in service, 
which makes them less convincing in the cases of real site 
data with strong noise, weak signals, and drift problems. 
 

3. METHODS 
 
Our method merges two ML models for the spatiotemporal 
localization and identification of invasive events. In detail, 
B-CNN is applied for spatiotemporal feature extraction, and 
LightGBM is used for precise classification and localization. 
 
3.1. B-CNN for action recognition 
 
B-CNN contains two feature extractors, whose outputs are 
multiplied using the outer product and pooled to obtain the 
bilinear vector [18, 19], thus making two different features, 
e.g., global features and local features, work together to im-
prove the classification of fine-grained images. 

In addition, 3DCNNs, as a widely used method in action 
recognition, can effectively fuse the information of the tar-
gets in both the space domain and the time domain [20]. 
Similarly, the distributed signal has a space–time correlation, 
which is not a common two-dimensional image [21] but a 
one-dimensional vibration signal in the time domain. Conse-
quently, we used B-2DCNN to extract the space–time fea-
tures of distributed signals in detail. 
 
3.2. LightGBM 
 
LightGBM is a gradient boosting decision tree proposed by 
Microsoft in 2017 [22], whose advantages such as efficient 
training process, distributed support, and low memory over-
head can be used to make systems better and faster in indus-
trial practice. Concretely, LightGBM uses the gradient-based 
one-side sampling (GOSS) to exclude most of the samples 
with small gradients and calculates the information gain with 
other data. Furthermore, LightGBM applies exclusive fea-
ture bundling (EFB) to transform many high-dimensional 
mutually exclusive features into low-dimensional dense fea-
tures, thereby avoiding the computation of redundant and 
unnecessary zero-valued features. Therefore, to obtain more 
accurate and robust results, we applied LightGBM for pre-
cise classification and localization. 
 

4. DATASET 
 
Our data were collected at a China National Petroleum Cor-
poration in-service pipeline in Suzhou, China, along which 
there are complex areas such as railways, factories, and vil-
lages. Different from ideal conditions, our data had the fea-

tures of strong noise, weak signal, and signal drift that were 
unique to long-distance pipelines at real sites. 

More specifically, we used a redundant optical fiber in-
stalled beneath the pipeline as a signal carrier, which could 
monitor a length of 48 km with 2,400 uniformly distributed 
observation points. These points were 20 m apart; i.e., the 
spatial resolution was 20 m. Moreover, to verify the univer-
sality of the hardware and the adaptability to signal drift, we 
gathered 494-GB data in 2016 continuously from May 10 to 
June 2 and from November 19 to December 17 and used 
100-Hz and 500-Hz signals, respectively. The signal catego-
ries included background noise (no damaging events), man-
ual excavation (might have been oil theft by drilling), me-
chanical excavation (third-party construction damaging the 
pipe), and vehicle driving (potential threat of heavy vehicles 
rolling over the pipe). We labeled the precise categories and 
the spatiotemporal coordinates of each event. 

In particular, note that our data collection was a very 
manpower-consuming and time-consuming process, which 
required professionally skilled technicians to spend up to 
two months traveling along the pipeline in harsh environ-
ments and repeatedly simulating different intrusion events at 
dozens of observation points. 
 

5. EXPERIMENTS 
 
The architecture developed is illustrated in Fig. 1, and the 
specific training process of the model is as follows: 

(a) Fix the spatial domain, and slide a window in the 
time domain to generate samples of size 2,000 × 7. Here, 
2,000 is the number of data items in the time domain, which 
corresponds to the length of 4 s in the case of the 500-Hz 
signals or 20 s in the case of the 100-Hz signals, and 7 is the 
number of spatial observation points, i.e., 120 m of the pipe. 

(b) Standardize the above samples separately. 
(c) Input the pre-processed samples into the B-CNN to 

pre-train and obtain all the parameters of the convolutional 
and fully connected layers. 

(d) Freeze the parameters of the convolutional layer in 
B-CNN, and the results from the flattened layer are input to 
the LightGBM model and retrain to obtain the optimal 
LightGBM model parameters. 

(e) The prediction value represents the result of its cen-
tral observation point in 4 s in the case of the 500-Hz signals 
or 20 s in the case of the 100-Hz signals. 

Moreover, to verify the generalizability of the method 
for the signal drift problem, we divided all the data into 
training and validation sets consisting of the data from May 
and June and the testing set containing the data from No-
vember and December. In addition, we adopted the Adam 
optimizer [23] with a learning rate of 0.001 and a batch size 
of 128. We used an Intel Core i7-8700 CPU at 3.2 GHz, a 
GTX1080ti GPU, and 32 GB of RAM for training and veri-
fication.
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Fig. 1. Data pre-processing and structure of the proposed B-CNN and LightGBM model. More specifically, we changed the 
size of the input and the output matrix to allow our data to be trained, and we adjusted the size and the initial weights of the 
convolutional kernels and added the pooling and the batch normalization strategies in the two CNN streams of the original B-
CNN [18,19], intending to better fit our distributed data. 
 

6. RESULTS AND DISCUSSIONS 
 
In this section, we describe the evaluation of our algorithm 
against other baselines in terms of identification and locali-
zation performance, time cost, and model size. Further, we 
present the test results for the pipelines already in service. 

 
Table 1. Performance comparison of different algorithms 
on 500-Hz/100-Hz testing sets 
 

   DNN 1DCNN  2DCNN B-CNN B-CNN_LGBM 

Background noise 

Precision (%) 87.20/85.33 95.26/96.26 100.0/100.0 99.88/100.0 100.0/100.0 

Recall (%) 87.20/86.29 96.58/98.83 100.0/100.0 100.0/100.0 100.0/100.0 

F1-score (%) 87.20/85.81 95.92/97.53 100.0/100.0 99.94/100.0 100.0/100.0 

AUC 0.873/0.867 0.978/0.989 1.00/1.00 0.999/1.00 1.00/1.00 

Manual excavation 

Precision (%) 91.32/89.26 97.75/94.38 100.0/100.0 98.98/99.25 100.0/100.0 

Recall (%) 92.24/90.68 94.83/95.33 91.38/98.06 93.26/98.50 96.98/99.75 

F1-score (%) 91.78/89.96  96.27/94.85 95.50/99.02 96.03/98.87 98.47/99.87 

AUC 0.928/0.908 0.972/0.956 0.957/0.990 0.975/0.991 0.989/0.999 

Mechanical excavation 

Precision (%) 72.66/69.78 81.37/73.59 83.51/75.19 93.57/82.86 97.25/85.03 

Recall (%) 74.36/75.67 84.32/78.67 95.29/100.0 92.88/98.68 98.67/100.0 

F1-score (%) 73.50/72.61 82.82/76.05 89.01/85.84 93.22/90.08 97.95/91.91 

AUC 0.753/0.763 0.855/0.808 0.959/0.973 0.967/0.982 0.988/0.985 

Vehicle driving 

Precision (%) 93.76/82.37 95.23/91.79 97.70/100.0 98.33/100.0 98.67/100.0 

Recall (%) 95.28/83.56 97.88/90.67 99.42/80.05 98.33/85.37 99.12/88.86 

F1-score (%) 94.51/82.96 96.54/91.23 98.55/88.92 98.33/92.11 98.89/94.10 

AUC 0.955/0.848 0.980/0.925 0.992/0.900 0.992/0.950 0.994/0.968 

Total 

Accuracy (%) 87.02/82.86 92.91/89.87 95.72/93.49 96.89/95.27 98.83/96.47 

The performances of B-CNN_LightGBM and the other 
models in the testing set under the same conditions and with 
the average of 10 repeated experiments are presented in Ta-
ble 1, and Figs. 2 and 3 show the AUC of each model for the 
four intrusion events for the 100-Hz and 500-Hz testing sets, 
respectively. First, the CNNs had better metric values in all 
the four events than the DNN, which proved that the convo-
lution could perform more effective feature extraction for 
distributed signals with a front-to-back frame dependency 
and a constant correlation length. Moreover, most of the 
results of the 1DCNN, which extracts features only in the 
time domain, were significantly worse than those of the 
2DCNN, which computes the features in both spatial and 
temporal dimensions. The difference between these was par-
ticularly obvious in the case of mechanical excavation, 
which fully demonstrated the existence of a strong space–
time correlation of our distributed signals. Furthermore, B-
CNN could better dig the features. The two feature extrac-
tors that we chose used different convolution kernels to ex-
tract the high-frequency and the low-frequency features sep-
arately, and the comparison in Table 1 shows that the two 
features were highly complementary. Moreover, LightGBM 
could further fit the features obtained from B-CNN and ob-
tain better recognition results than the fully connected layer. 

Next, as we attempted to solve a practical engineering 
problem, the real-time performance and the model size de-
termined the applicability of the hardware and the practical 
application effects. Therefore, we tested a 4-min data sample 
from a 48-km pipe and repeated the test 10 times, averaging 
the results shown in Table 2. Our method could accurately 
identify and locate the damage events within an extremely 
short period of time. In particular, the total recognition time 
was 19.37 s for 500 Hz and 7.987 s for 100 Hz, which fully 
met the requirements of industrial-level real-time perfor-
mance. Furthermore, the model size was only 25.68 MB, 
allowing it to be deployed in most embedded systems. 
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Fig. 4. Feature maps and identification results from a 48-km pipe of 500-Hz data. The upper portion shows the fusion features 
extracted from B-CNN, and the lower portion presents the corresponding identification results. (a) Manual excavations appear 
at approximately 14 km and last for nearly 120 s. (b) Mechanical excavations appear at 2 km and last for approximately 160 s. 
There are also continuous vehicle driving events from 8 to 10 km. 
 
Table 2. Model size and time cost of a 4-min data sample 
from a 48-km in-service pipeline 
 

 Model time Total time Model size 

100 Hz 5.569 s 7.987 s 
25.68 MB 

500 Hz 15.36 s 19.37 s 

 

 
Fig. 2. AUC dependency on different models of 100-Hz data 
 

 
Fig. 3. AUC dependency on different models of 500-Hz data 
 

Finally, Fig. 4 shows the identification results of a com-
plete pipeline using 500-Hz data. Fig. 4a shows that the ac-
curacy of our model for manual excavation () was 98.57% 
for the spatiotemporal localization and identification. There 
were false alarms for the mechanical excavation (), with a 
rate of approximately 5.62%, but such samples were almost 

discrete and we could constrain the minimum time of the 
intrusion events to filter them. As for Fig. 4b, the model 
could adequately locate and identify the mechanical excava-
tion () with 98.33% accuracy in the time–space domain. 
 

7. CONCLUSIONS 
 
In this paper, we proposed a novel real-time PSEW technol-
ogy combining B-CNN and LightGBM based on the spatio-
temporal features of distributed optical fiber sensors. Ac-
cording to the experimental results from real pipelines, the 
described algorithm could identify and locate damage events 
under the conditions of strong noise, weak signals, and sig-
nal drift with accuracies of 96.47% (100 Hz) and 98.83% 
(500 Hz) in testing sets. In addition, by comparing B-CNN 
with other models, we demonstrated that the industrial dis-
tributed signals were strongly correlated with both spatial 
and temporal information and that B-CNN could effectively 
acquire various complementary industrial distributed signal 
features. Furthermore, LightGBM could summarize features 
better and improve the robustness of the model as compared 
to the fully connected layer. Moreover, our model fully met 
the industry standards in terms of model size, real-time per-
formance, and easy deployment. 

The limitation of this paper is that the algorithm is not 
fully robust to abnormal and error data, which requires more 
field tests and long-time applications to verify. Fortunately, 
the verification has already begun, and we will improve the 
fault tolerance with online learning based on the field feed-
back, which will be presented in our follow-up work. 

In the future, we plan to explore the applications of dis-
tributed signal early warning in other areas, such as national 
border security technology, earthquake early warning, and 
bridge safety monitoring. 
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