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Long-Distance Pipeline Safety Early Warning:
A Distributed Optical Fiber Sensing
Semi-Supervised Learning Method

Yiyuan Yang, Haifeng Zhang, and Yi Li

Abstract— Pipeline safety early warning (PSEW) systems based on
distributed optical fiber sensors are used to recognize and locate third-
party events that may damage long-distance energy transportation
pipelines and are essential to ensure pipeline safety and energy supply.
However, the deployment of PSEW systems in real sites is hindered
by the high experimental cost of collecting large real-site data sets
for model building and the small percentage of labeled data (typically
less than 0.5%). Besides, the optical fiber sensors are sensitive to
hardware and the environment, ensuring challenges to directly migrate
the old PSEW system for a new deployment. In this study, a novel
semi-supervised learning model is proposed to monitor the safety of
pipelines in real-time. Concretely, the sparse stacked autoencoder trained with unlabeled data is used to extract more
robust features, and the fully-connected network trained with a small amount of labeled data is used for location and
identification. Encouraging empirical results on the real-world long-distance energy pipelines of the PipeChina confirm
that our method achieves better recognition and localization performance in comparison to the baseline with less labeled
data. Further, the model size and recognition latency are reduced by 18.9× and 7.9× of the baseline, respectively. Also,
the decoded features have better visualization than the input. This work reduces the cost of PSEW system deployments,
improves its performance and portability, and will contribute to the widespread use of PSEW systems in the industry.

Index Terms— Pipeline safety early warning, Distributed optical fiber sensor, Semi-supervised learning, Sparse stacked
autoencoder, Pattern recognition

I. INTRODUCTION

ENERGY pipeline integrity is crucial for safe operation
and energy supply. With the recent sharp increase in

energy pipeline mileage, pipeline safety early warning (PSEW)
systems play a more important role to automatically recognize
and locate third-party events that may damage long-distance
energy transportation pipelines. They are applied to replace
the inefficient and costly manual inspections. Energy pipelines
are generally buried to reduce their floor space, which makes
it challenging to directly observe their security. Fortunately,
when deploying an energy pipeline, a single cable with mul-
tiple optical fibers is generally installed close to the pipe at
the same time, and only a few fibers in the cable are used
for communication. As such, other redundant fibers can be
used without any additional hardware cost [1]. Currently, some
researchers are using distributed optical fiber sensors (DOFSs)
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with the phase-sensitive optical time-domain reflectometry (φ-
OTDR) technology to detect vibrations that occur on the
ground, close to the buried fiber, recognize the threat activities
type around the pipeline, and provide early warning in real-
time. They have the advantages of weak radiation, good
real-time performance, antielectron magnetic interference, and
long-distance distributed detection [2].

However, the signals of DOFSs are highly susceptible to
the environment and hardware [3], coupled with their inherent
characteristics of strong noise, weak signal, and signal drift
problem in a time-space domain [4], making it challenging
to use a certain method to identify and locate the third-party
events under all conditions, and even more challenging to ap-
ply the same PSEW algorithm in different pipelines. Therefore,
it places higher demands on algorithms that recognize signals.
The main challenge in PSEW algorithms can be divided into
the following: feature extraction and recognition algorithm [1].

Various features of optical fiber signals can be extracted
from the time domain, frequency domain, time-frequency
domain, and time-space domain. Tanimola and Hill [5] used
transients and tonal features broadband noise in time-domain
as the features. However, they did not consider the instabil-
ity of raw data. Fouda et al. [6] utilized frequency-domain
power spectral estimation of short-term energy to extract
features. Zhang et al. [7] obtained the power spectral density
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and designed an adaptive filter bank to improve the Mel-
frequency cepstrum coefficient as feature maps. Nevertheless,
the sampling frequency of the signal is rather high, where
only computing using the frequency-domain may result in
losing the time-domain information of the raw signal. Wang
et al. [8] used wavelet transform to decompose data and cal-
culate the normalized energy of the reconstruction coefficient.
Such time-frequency domain features also include empirical
mode decomposition and short-time fast Fourier transform.
Although the time-frequency features have effective represen-
tations, the high computational complexity hinders the real-
time performance of long-distance PSEW systems. Recently,
some researchers noticed the spatio-temporal correlation of
the distributed signal. As such, they analyzed it together with
the time-frequency method. Sun et al. [9] applied image
processing methods for denoising and extracting features.
Moreover, Yang et al. [10] proposed two complementary
features, which were dimensionless with reliable robustness
for various deployments and had good visualization and real-
time performance for industrial monitoring.

Considering the recognition algorithm, it is common to use
machine learning and deep learning methods (DL) [11]. Sheng
et al. [12] improved the stochastic configuration network
through truncation singular value decomposition. Wang et al.
[8] and Sun et al. [9] applied relevant vector machines, and
Xu et al. [13] used support vector machines. Besides, Wu
et al. [14] and Tejedor et al. [15] proposed a multi-layer
perceptron model. Chen et al. [16] and Kong et al. [17] used
a probabilistic neural network, which does not require back-
propagation to optimize parameters. Also, Wang et al. [18] and
Huang et al. [19] used the random forest for classification.

With the development of DL and the advent of the data-
driven era, researchers have attempted to fuse feature extrac-
tion and event classification into an end-to-end DL model.
Many scholars treated DOFS signals as images and used
convolutional neural networks (CNNs) or their variants for
feature extraction and fully connected networks (FCNs) for
classification [20]–[24]. In particular, Yang et al. [25] utilized
novel bilinear CNNs and LighGBM model, whose extracted
features were well visualized. In addition, temporal signals
have long-term dependence and variable correlation length
bidirectionally because of the φ-OTDR signal scattering and
reverse propagation. As such, Bai et al. [26], Li et al. [27], and
Yang et al. [10] presented long short-term memory (LSTM),
convolutional LSTM, and bi-directional LSTM (BiLSTM)
models combined with CNNs. Particularly, Yang et al. [10]
deployed the model to a real long-distance energy pipeline
and achieved over 99% recognition accuracy in real-time.

Currently, there are some PSEW systems already deployed
on real pipelines [10], [28], [29]. Nevertheless, they continue
to have the following pain points: (1) The spatial migration
capability is poor. Since DOFSs are significantly affected by
environments, it is challenging to deploy the trained algorithm
in a pipeline directly into another pipeline. (2) The algorithm
cannot solve the signal time drift well. Due to changes in
environmental and hardware conditions over time, such as
temperature and soil moisture content, the performance of the
method deployed can degrade significantly after a period. (3)

The model size and latency may affect the performance of
the system. As the distance of monitoring pipelines becomes
longer, the model size needs to be reduced to help the deployed
algorithm with less latency to ensure real-time monitoring.
(4) The cost of collecting data is rather high. As building
the DL model requires the collection of large amounts of
samples manually, it requires professionally skilled technicians
to travel along the pipe to simulate intrusions events, which is
manpower-intensive and consumes significant amounts of time
[10]. (5) The sample utilization is very small. The DOFS can
collect data from every point along the pipe, but experiments
are generally undertaken in a small area every time, whose
data is labeled, while the signals from other locations are
simultaneously unlabeled. For a 50 km pipeline, experiments
are conducted in 100 m ranges, the percentage of labeled data
is only 0.2%, and the other unlabeled data is not available in
the existing works. However, the unlabeled samples contain
several signal features, which causes a huge waste.

To address the above problems, with strong industrial de-
mands, semi-supervised learning is employed to improve the
utilization of unlabeled data to reduce the experimental cost
and address the problem of model migration with smaller
model size and latency. The contributions are summarized
as follows. (1) A novel semi-supervised learning model is
proposed for recognition and spatiotemporal localization of
damage events based on sparse stacked autoencoder (SSAE),
including CNNs, BiLSTMs, and self-attention methods. (2) It
is demonstrated that the proposed method can use unlabeled
data with less labeled data to obtain better results in com-
parison to the baseline, which significantly improves sample
utilization and reduces costs. (3) Through the experiments
on operating long-distance pipelines, it is proved that the
encoding learned from unlabeled data has good spatiotemporal
transferability. (4) It is verified that the features decoded by
the SSAE model will highlight more useful features for better
visualization, which can help supervisors visually monitor the
situation for more intuitive analysis. (5) It is confirmed that
the model adopted in this study has a smaller size and latency
than the baseline, which can match various hardware.

The remainder of this paper is organized as follows. The
background and basic algorithms are presented in Section
II. The approach of the proposed semi-supervised learning
model is described elaborately in Section III. Section IV
shows the comprehensive experimental result and discussions.
A summary and future direction are provided in Section V.

II. BACKGROUND AND BASIC ALGORITHMS

A. Energy PSEW Systems

The simplified structure of the energy PSEW system is
shown in Fig. 1. The yellow line is the optical fiber cable,
which is generally installed within 25 cm away from the under-
ground energy pipe. An ultra-narrow linewidth light (UNLL)
source with a center wavelength of 1550 nm is deployed in the
monitor center. Subsequent to modulating the continuous light
into probe pulses by an acoustic optic modulator (AOM) and
compensating for light energy losses by an erbium-doped fiber
amplifier (EDFA), the amplified probe pulses are injected into
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Fig. 1. Structure of the energy PSEW system.

the fiber through a fiber circulator (FC). The vibrations caused
by external events, such as cars and excavations, can cause
changes to the fiber signal, then the Rayleigh backscattered
light containing information of those events is directly routed
to a photoelectric detector (PD). Through a data acquisition
card (DAC) detecting the intensity evolution over time, the
data will be processed by a personal computer (PC) [30].
The PC uploads the raw data to the data center together
with the warning information (i.e., the type of event identified
and the spatio-temporal coordinates of the warning), via the
PSEW algorithm. The data center collates the information
and aggregates it to the monitor center. Correspondingly, the
monitor center sends the processing results of each alert back
to the data center to be stored regularly.

B. Basic Models and Algorithms
1) Simple Autoencoder: Autoencoder (AE) is a popular DL-

architecture model in which the raw data is compressed into
smaller dimensional encodings and reconstructed at the output.
Also, these encodings can represent the data with minimum
reconstruction loss. The structure of a simple AE with 2-layers
is shown in Fig. 2, where the raw input X ∈ RN is compressed
to a feature map Y ∈ RF and reconstructed into X ′ ∈ RN .
In detail, the AE in Fig. 2 satisfies

Y = σ2(W2(σ1(W1X + b1)) + b2)
X ′ = σ1(W′1(σ2(W

′
2Y + b′2)) + b′1)

(1)

where {W1,W2,W′1,W
′
2} are the learned weight matrix in the

first and second layers of the encoder and decoder, respec-
tively; and {b1, b2, b′1, b

′
2} are the relative bias. In addition,

{σ1(·), σ2(·)} represent the activation functions, which are
generally nonlinear. Then we use an optimization algorithm,
such as Adam, to minimize the mean square error in (2), and
we obtain the optimal Wopt and bopt values.

L(X,X′) =
1

N

∥∥X − X′
∥∥2
2

(2)

2) Sparse Autoencoder: When there are many hidden layer
nodes, simple AEs cannot automatically learn important fea-
tures. As such, some constraints are required to be imposed
on the hidden layer nodes. Sparse AE applies some sparsity
constraints on the hidden layer nodes, which achieves a sparse
effect by suppressing most of the hidden layer neurons. The

Fig. 2. A simple autoencoder with 2-layers.

Fig. 3. The structure of BiLSTM model.

loss function of second layer sparse AE is shown in (3)–(5).

Jsparse(W, b) =
1

N

∥∥X − X′
∥∥2
2
+ β

K∑
j=1

KL(ρ||ρ̂j) (3)

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j
(4)

ρ̂j =
1

N

N∑
i=1

[a
(2)
j (xi)] (5)

where β denotes the hyper-parameters that control the weights
of the sparsity (i.e., KL divergence). ρ is defined as the
expected average activation value, which is generally a smaller
value close to 0, and ρj is the average activation of the j-th
node. a(2)j (xi) is identified as the activation value of the j-th
node under the input xi.

3) Stacked Autoencoder: Stacked AE is a DL-based model
composed of multi-layer AE in which the output of the former
AE serves as the input of the later AE. More specifically,
stacked AE is trained using the greedy layer-wise pre-training
method. For example, the first layer of the stacked AE is
trained with the input to obtain the weight W1 and bias b1, and
then the weight and bias of the first layer are kept constant, the
output of the first layer is used as the input of the second layer,
and the weight W2 and bias b2 of the second layer are trained.
In this order, all the parameters need to be trained. Subsequent
to initialization, all the parameters need to be finetuned.

4) BiLSTM: The BiLSTM model is an extension of the
basic LSTM model where two LSTMs are used separately
for input, as shown in Fig. 3. The input of the first LSTM A
is a sequential sequence of the raw data, the reverse form of
the input sequence is fed into the second LSTM A′, and the
forward S and reverse sequences S′ are concatenated together
to obtain the output y. Applying the LSTM model twice aims
to obtain long-term dependence, variable correlation length
and bidirectional and complex relations appropriately.
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Fig. 4. The structure of self-attention.

5) Self-attention: Self-attention is a special case of attention
methods that only use one sequence to compute its representa-
tion [31], which can obtain the dependencies not only between
the source and target, but also between the source or the target
itself. In comparison to BiLSTM, self-attention can enhance
the ability to obtain long-term dependent information and have
less parameters that need to be trained. The specific calculation
process is as follows and in Fig. 4. Giving weighting matrices
WQ,WK ,WV ∈ Rn×t, multiply the input X ∈ Rt×d with
the above three weight matrices, respectively to obtain the
corresponding results Q ∈ Rn×d named query, K ∈ Rn×d

named key, and V ∈ Rn×d named value, as shown in (6).

Q =WQX K =WKX V =WVX (6)

where d is the number of hidden units of the model, and the
i-th attention value is calculated as (7).

Attentioni(Q,K, vi) = Softmax(
QKT

√
d

)vi (7)

Finally, all the values above are added to obtain the output
y ∈ Rn×d, as shown in (8).

y =
∑
i

Attentioni(Q,K, vi) (8)

III. METHODOLOGY

A. Signal Compensation and Feature Extraction

When the light source is transmitted in a fiber, its energy
shows exponential attenuation over the propagation distance
due to deployment reasons, such as bending of the fiber during
laying, uneven material, and fusion splicing, and due to in-
herent consumption, such as Rayleigh scattering [1]. It causes
the low signal-to-noise ratio (SNR) at the end of the fiber, and
affects the algorithms performance. Recently, engineers have
used signal relay amplifiers (SRAs) at approximately every
25 km intervals along the fiber for compensation. However,
the signals between SRAs continue to suffer from exponential
attenuation. Therefore, each observed point is normalized
between two SRAs by dividing the signal value by the average
signal value over 12 hours of continuous updating.

Considering the actual industrial use, the extracted features
need to be well visualized to help supervisors monitor them
more intuitively. In addition, good interpretability, real-time
performance, and robustness are also required. As such, the
feature generator in the Algorithm of Yang [10] is applied to
extract two dimensionless and complementary features (i.e.,
peak feature with high-frequency and instantaneous informa-
tion and energy feature with low-frequency and continuous
characteristics). Furthermore, sliding window operations are
used on the raw distributed signal to ensure that the features
can obtain the spatio-temporal information. After repeated

TABLE I
NETWORK SPECIFICATION

Layer Shape Activation function

Encoder

BN1 (E1) (100,7,1) –
Conv1 (E1) (100,7,16) Relu

Max-pool1 (E1) (50,7,16) Maxpool
Conv2 (E2) (50,7,32) Relu

Max-pool2 (E2) (25,7,32) Maxpool
Conv3 (E3) (25,7,64) Relu

Max-pool3 (E3) (5,1,64) Maxpool
Reshape (E4) (5,64) –
BiLSTM (E4) (5,64) –

Self-attention (E4) (5,64) –

Decoder

Reshape (5,1,64) –
UpSampling1 (25,7,64) Bilinear

Conv4 (25,7,64) Relu
UpSampling2 (50,7,64) Bilinear

Conv5 (50,7,32) Relu
UpSampling3 (100,7,32) Bilinear

Conv6 (100,7,16) Relu
Conv7 (100,7,1) Sigmoid

Classifier

Concatenate (10,64) –
Dropout (10,64) –
Flatten (640) –
Dense1 (128) Relu

BN2 (128) –
Dense2 (4) Softmax

experiments, it was found that 7 is the best number of observed
point in the space-domain and window size is 100 in the time-
domain (i.e., the input size of each branch is 100×7×1, which
corresponds to 20 s of 500 Hz signal and 100 s of 100 Hz
signal, and 120 m of the pipeline).

B. SSAE Algorithm for Event Recognization
The SSAE model is applied as the event recognizer. More

specifically, the fusion of stacked AE with sparse AE (i.e.,
SSAE) results in a small model that tries to fit better by
layer-wise training and sparsity compression, thus reducing
the model size and improving the real-time performance and
robustness. Moreover, BiLSTM and self-attention mechanisms
are pioneeringly utilized as independent elements in the
SSAE model in which BiLSTM can effectively solve the bi-
directional dependence problem caused by signal scattering
and reflection, and self-attention can obtain the long-term
dependence information of the signal in the time-domain
and reduce the number of parameters. In short, SSAE can
efficiently compress the distributed and spatio-temporal signal
through progressive abstraction levels in an unsupervised man-
ner. Subsequent to training, the input can then be reduced to
the feature map of the deepest layer for further classification.

Considering the model size, real-time performance, and the
ease of continuing end-to-end training, FCNs are applied for
location and classification training with a small amount of
labeled data based on the feature map extracted by the encoder.
Also, batch normalization (BN) is utilized to avoid distributed
data bias and keep the data away from saturation zones, which
can speed up training and improve accuracy. Besides, max-
pooling and dropout strategies aim to simplify the model and
alleviate overfitting. The detailed model specification with
encoder-decoder and classifier is shown in Table I and the
flowchart of the SSAE model is shown in Fig. 5.
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Fig. 5. Flowchart of SSAE model with encoder-decoder and classifier. Blue is the feature extractor from our previous work [10], dark grey is BN,
light gray is Conv2d layer, purple is max-pooling, dark green is the BiLSTM layer, orange is self-attention mechanism, light green is dropout, and
light yellow is the fully connected layer. The peak features (input of the upper submodel) and energy features (input of the lower submodel) from the
feature extractor are expressed by heat maps and contour maps, respectively; and the yellow and red rectangles are their encodings.

Algorithm 1 SSAE algorithm
Input: Peak and energy features of labeled data Lp, Le with label
T , peak and energy features of unlabeled data Up, Ue.
Parameter: The batch size of encoder-decoder and classifier
mae,mc, the learning rate η and decay rate d, Adam hyperparameters
α, µae, µc, AE and classifier iterations per loop nae, nc, the number
of greedy layer-wise pre-training N .
Require: Initial peak and energy AE Ep(·; θp00), Ee(·; θe00), initial
classifier C(·; θc0).

1: while θp, θe have not converged do {Part1: Encoder-decoder}
2: for each i ∈ [1,nae] do
3: for each j ∈ [1,mae] do
4: Shuffle and sample the unlabeled data up, ue ∼ Up, Ue.
5: f2p , f

2
e ← E1

p(up; θp1), E
1
e (ue; θe1)

6: for each k ∈ [2,N ] do
7: fk+1

p , fk+1
e ← Ekp (f

k
p ; θpk ), E

k
e (f

k
e ; θek )

8: end for
9: fp, fe, u

′
p, u
′
e ← Ep(up; θp), Ee(ue; θe)

10: end for
11: θp ← Adam(∇θp

∑mae
j=1 L(upj , u

′
pj ), η, d, α, µae)

12: θe ← Adam(∇θe
∑mae
j=1 L(uej , u

′
ej ), η, d, α, µae)

13: end for
14: end while
15: while θc has not converged do {Part2: Classifier}
16: for each i ∈ [1,nc] do
17: for each j ∈ [1,mc] do
18: Shuffle and sample the labeled data lp, le ∼ Lp, Le and

their label t ∼ T , correspondingly.
19: f̂p, f̂e ← Ep(lp; θp), Ee(le; θe)
20: t̂← C([f̂p, f̂e]; θc)
21: end for
22: θc ← Adam(∇θc

∑mc
j=1 L(t, t̂), η, d, α, µc)

23: end for
24: end while

The complete training process of the SSAE model is shown
in Algorithm 1. For the encoder-decoder, unlabeled samples
are utilized for training, while the peak and energy features
obtained by the feature extractor are fed into two branches of
the model after a shuffle. Based on the greedy layer-wise pre-
training method, the encoder model is divided into four parts,
namely E1, E2, E3, E4, as Table I shows, and are trained
as follows. Considering one batch as an example, firstly, the
original features are used as the input and E1, (i.e., BN1,

Conv1, and Max-pooling1 in Table I) are used as the encoder
and trained with a fully symmetric decoder. The model is
optimized with the aim that outputs are the same as the input
to obtain the optimal parameters of E1. Secondly, freezing the
parameters of E1 and its output is then applied as the input
of the encoder E2, where E2 includes the Conv2 and Max-
pooling2, and is also trained with its fully symmetric decoder.
The same is continued till the training of E4, (i.e., BiLSTM
and self-attention) is completed. Finally, the complete model
is fine-tuned as a whole using the original features to obtain
the optimal parameters of the encoder-decoder model. Besides,
the above operations are completely independent for the two
branches of the model, but the process is identical.

Considering the classifier, a small amount of labeled data
is used for training. Based on the optimal encoder-decoder
model, all the parameters of its two branches are frozen and the
outputs of the two self-attention layers in E4 are concatenated.
The same are then used as the input of the classifier. The
classifer in Algorithm 1 is then trained for supervised learning,
where the ground truth is the label of the raw data.

IV. EXPERIMENTS AND RESULTS

A. Experimental Facility and Data Collection
Experimental facilities were deployed in an operational

long-distance oil pipeline from the PipeChina Northern
Pipeline Company Cangzhou Section. The pipeline tested
was from Qingxian Station to Renqiu Station, which was
approximately 85 km. Two SRAs were installed at 25 km
and 56 km of the pipeline. The real-site deployment and
experimental facility of the PSEW system are shown in Fig. 6.
More specially, a redundant single-mode optical fiber was only
used from the communication cable for monitoring as shown
in Fig. 6(a), which was at no additional cost. The environment
along the pipeline was complex, crossing several urban areas,
rivers, and railway lines, and suffered from multiple types of
noise superpositions and low SNR conditions.

1.69 TB of data was collected in the autumn of 2020, of
which only 4.12 GB (i.e., 0.24% of total data) had labels.
Particularly, two sample frequencies of 500 Hz and 100 Hz
were tested. When the frequency is low, the hardware cost of
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Fig. 6. Real-site deployment and experimental facility of the PSEW
system. (a) Relative positions of the underground energy pipeline and
optical fiber cable. (b) Deployed facilities.

TABLE II
DESCRIPTIONS OF THE LABELED DATASETS

Event Label 100 Hz (#) 500 Hz (#)
Background noise 0 13,500 13,500
Manual excavation 1 3,920 3,600

Mechanical excavation 2 16,600 14,400
Vehicle driving 3 10,800 9,600

the facility is low. However, this results in less information
being contained per unit time and the algorithms are more
demanding. Balancing signal frequency and algorithm perfor-
mance is of significant engineering interest. The labeled data
collected was divided into four categories with the labels 0, 1,
2, and 3 sequentially, namely background noise (no events),
manual excavation (potential energy theft by pipe drilling),
mechanical excavation (potential third-party construction dam-
aging the pipe), and vehicle driving (potential heavy vehicles
rolling over the pipe). In order to verify the spatio-temporal
robustness and transferability of the compressed features, the
encoder-decoder was trained with unlabeled data from four
different conditions, shown in Table III. And for the training
of the classifier, the labeled data was divided into a training
set, validation set, and testing set in the ratio 3:1:1. All the
labeled and unlabeled datasets are shown in Tables II and III.

Further, mean square error was used as the loss of the
encoder-decoder and sparse categorical cross-entropy as a
classifer loss function, and applied Adam as the optimizer
to monitor the loss of the validation set for hyperparameter
tuning. Also, the initial learning rate was set at 0.001 and
specified it to decay to 95% of the current value after every
10 epochs. The batch size was 128 with 20 epochs for the
encoder-decoder model and 100 epochs for the classifier. A PC
with an Intel Core i7-8700 CPU running at 3.2 GHz, a RTX
2070Super GPU, and 32 GB of RAM was used for training
and verification. Considering the industrial deployment, Ten-
sorFlow 2.1.0 was used for model building under Python 3.7.3.

B. Case Study and Discussion
1) Visualization of Decoded Features: Fig. 7 provides the

results of the decoded features in comparison to the input

TABLE III
DESCRIPTIONS OF THE UNLABELED DATASETS

Pipeline info Duration (min) Length (km) Data size (#)3

Pipe1 in 2016 summer1 30 48 418,696
Pipe1 in 2016 winter 30 48 418,672
Pipe2 in 2020 spring2 10 42 122,262

Pipe2 in 2020 autumn 15 85 370,685
1 Pipe1: The gas pipe of the West-East Natural Gas Transmission Project Suzhou Section.
2 Pipe2: The oil pipe of the PipeChina Northern Pipeline Company Cangzhou Section.
3 For both 100 Hz and 500 Hz dataset.

Fig. 7. Decoded features (lower) vs. input features (upper).

features. The upper portion is the input energy features and the
lower portion is the corresponding decoded energy features. (a)
is the background noise and the results show that the decoded
features can filter out various noises of the signal. (b) and
(c) are manual and mechanical excavations, respectively; and
each light-colored region represents a single action. The results
display that the decoded features can highlight more useful
features. Different from the distinct features that are already
present in manual and mechanical excavations, vehicle driving
(d) is harder to distinguish from background noise when
the SNR is small. However, the decoded features produce
a more significant difference to the background noise. For
practical application scenarios, the decoded features can help
supervisors visually monitor pipes for more intuitive analysis.

2) Identification Performance: To verify the identification
performance of the proposed SSAE model and the spatiotem-
poral transferability of the encoding features, four different
unlabeled datasets were utilized in Table III to train the
encoder-decoder separately and used all the labeled data in
Table II to train the classifier, and the results with an average
of 10 repeated experiments are presented in Table IV for 100
Hz and 500 Hz data. For recognition performance, it can
be observed that all evaluation indices1 are above 90% (0.9)
based on the different unlabeled datasets and the collection
frequency. In particular, the recognition of background noise is
rather good as most of the real labels of the unlabeled data are
background noise. The recognition of manual and mechanical
excavations is slightly better than that of vehicle driving as
the former features are inherently more distinctive, while the
latter do not have standard periodic or spatiotemporal features.
As for spatiotemporal transferability, although the labeled data
were collected in pipe2 in the autumn of 2020 and trained with
unlabeled data in different conditions, the SSAE model used in
this study can also achieve results that meet the requirements
of industrial applications, which confirmed that the encoding

1Acc is accuracy. Acc = (TN+TP) / (N+P)×100%. Se is sensitivity. Se =
TP / (TP+FN)×100%. Sp is specificity. Sp = TN / (TN+FP)×100%. AUC is
the area under the receiver operating characteristic curve.
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TABLE IV
PERFORMANCE OF THE SSAE ALGORITHM TRAINED WITH DIFFERENT UNLABELED DATASETS

Data Data info Background noise Manual excavation Mechanical excavation Vehicle driving Total
Acc(%) Se(%) Sp(%) AUC(#) Acc(%) Se(%) Sp(%) AUC(#) Acc(%) Se(%) Sp(%) AUC(#) Acc(%) Se(%) Sp(%) AUC(#) Acc(%)

100 Hz

Pipe1 in 2016 summer 94.81 95.33 94.28 0.951 95.23 94.67 95.78 0.956 93.65 93.93 93.36 0.939 93.28 92.68 93.87 0.935 94.05
Pipe1 in 2016 winter 97.04 96.97 97.10 0.976 94.92 95.57 94.27 0.953 93.77 92.86 94.67 0.941 93.62 93.46 93.78 0.940 94.82
Pipe2 in 2020 spring 94.01 93.28 94.73 0.943 93.02 92.28 93.75 0.934 94.26 93.50 95.02 0.946 92.32 91.88 92.76 0.929 93.61

Pipe2 in 2020 autumn 98.37 97.90 98.83 0.987 95.38 93.72 97.03 0.961 94.05 93.56 94.53 0.943 93.70 93.16 94.23 0.941 95.38

500 Hz

Pipe1 in 2016 summer 99.22 99.18 99.26 0.998 96.27 97.23 95.30 0.966 97.95 97.93 97.97 0.982 94.58 94.73 94.43 0.949 97.43
Pipe1 in 2016 winter 99.21 99.02 99.40 0.998 96.04 96.10 95.98 0.964 96.46 95.63 97.28 0.967 94.89 95.61 94.16 0.950 96.96
Pipe2 in 2020 spring 99.93 99.86 100.0 0.999 93.82 94.31 93.33 0.943 94.07 93.20 94.94 0.945 93.99 93.88 94.09 0.943 95.95

Pipe2 in 2020 autumn 100.0 100.0 100.0 1.000 98.28 98.82 97.73 0.984 97.98 97.20 98.75 0.982 94.70 93.51 95.88 0.951 97.90

Fig. 8. The impact of the amount of labeled data on performance with
various methods at 100 Hz and 500 Hz.

has good spatiotemporal transferability. In addition, the results
using 500 Hz data are better than those using 100 Hz data,
due to the fact that 500 Hz data has a greater amount of signal
fluctuation information per unit of time. It is worth noting that
the relatively poor results for pipe2 in the spring of 2020 are
due to the fact that the equipment was recently deployed. As
such, the signal was less stable.

3) Impact of the Amount of Labeled Data on Performance:
The impact of the amount of labeled data on performance with
various methods considering an average of 10 repeated exper-
iments is presented in Fig. 8. The comparisons include classi-
fication and regression tree-based random forest (CART RF),
extreme gradient boosting (XGBoost), radial basis function
kernel support vector machine (RBF SVM), fusion CNN,
CNN with BiLSTM, and proposed SSAE method, which are
all described in Chapter I. Considering the proposed SSAE
model, the unlabeled data of pipe2 in the autumn of 2020 was
used to train the encoder-decoder model. It is notable that
because the datasets and goals are different, it is impossible
to make a direct comparison with the baselines of previous
related works. As such, we only apply their methods on the
result of feature extractor in Chapter III-A. From the results

in Fig. 8, it can be clearly observed that the proposed SSAE
model not only achieves a much higher AUC than other
baselines when using a small amount of labeled data, but also
guarantees a high recognition performance when the labeled
data is gradually reduced, both for 100 Hz and 500 Hz data.
More specifically, for 100 Hz data, the SSAE model can
achieve an AUC value of over 0.9 using only 40% labeled data,
and for 500Hz data, this number is 20%. The performance
does not degrade significantly as the amount of data gradually
reduces to 50%. For other methods, the AUC is reduced by
20% when the number of labeled data is reduced by half. In
short, in terms of real applications, the approach adopted in
this study can significantly reduce the number of experiments
and the costs in time and economy when deployed.

4) Complete Pipeline Performance: A complete PSEW case
is shown in Fig. 9, which was conducted on 26 November 2020
from 10.30 am to 11 am of pipe2. Continuous mechanical
excavation operations were undertaken at 41 km and the
model was effective in identification and localization, which
can be clearly observed in Fig. 9. In addition, most of the
other unknown events could be matched with the results. For
example, a large number of vehicles driving past and a small
number of excavations were identified in the range of 0–2 km,
which is because the pipe passed the Qingxian County and
the test was conducted on a weekday morning. As such, the
information on vehicles and pedestrians was obvious. Besides,
a small number of manual and mechanical excavations were
identified at 30–31 km and it was confirmed on-site that there
was a road running parallel to the pipe and a factory not far
from the pipe whose vertical press machine was used during
the test-time, resulting in a large signal being monitored.
Moreover, the false alarms were higher at 25–26 km and 55–56
km due to the two SRAs being placed here, resulting in signal
instability and even intermittent signal saturation. However,
through actual deployment and heuristic debugging, most of
these issues have been implemented. In addition, a full day
identification results is shown in Fig. 10, which was tested
on 25 November 2020 of pipe2. It can be observed that there
were significantly more vehicle drivings from 6 am to 9 pm in
the 0–2 km (i.e., Qingxian County) and 2–6 km (i.e., highway
networks) than the other times of the day, which was consistent
with people’s activities on weekdays. Also, two experiments
with mechanical excavation were carried out respectively at
36 km from 9 am to 11 am and at 57 km from 2 pm to 3 pm,
which could be seen in Fig. 10.

5) Deployment Performance: The experiments of deploy-
ment performance include model latency and size. This was

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on June 12,2021 at 14:46:34 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3087537, IEEE Sensors
Journal

8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021

Fig. 9. Peak features and identification results from pipeline2 in the autumn of 2020. The upper portion shows the peak features and the lower
portion represents the corresponding identification results. It can be observed that mechanical excavation occurred for 30 mins at around 41 km,
which was accompanied by signals of vehicle drivings (i.e., at that moment the engine of excavator was opening and the position was adjusted to
find a better angle for operation). Most of the events were background noises and vehicle drivings at several specific mileages.

Fig. 10. Full day identification results from the pipeline2 in the autumn of 2020.

TABLE V
DEPLOYMENT PERFORMANCE TESTING

Data (Hz) latency (ms) AE size (KB) Classifier size (KB)
100 0.68 678 345500 1.73

repeated 10 times and the average is shown in Table V. In
detail, the model latency is only approximately 1.73 ms per km
for 500 Hz and 0.68 ms per km for 100 Hz with 20 m spatial
resolution using GPU. The encoder-decoder size is 678 KB
and more specially, the classifier size is only 345 KB allowing
it to be deployed in most embedded systems and finetuned with
a few labeled datasets. Further, by matrix optimization and
heuristic threshold methods, the approach used in this study
achieves a relatively good deployment performance and fully
meets the industrial requirements.

V. CONCLUSION

In this paper, a novel semi-supervised learning method is
presented based on DOFS to monitor the safety of long-
distance energy transportation pipelines in real-time (i.e., rec-
ognizing and locating the third-party events). The experiments
from long-distance operational energy pipelines indicate that
the proposed SSAE model can improve identification and
location performance with a significant amount of unlabeled
data and a small amount of labeled data with low SNR
conditions, which could reduce the cost of data collection and
system deployment. The encoding learned from unlabeled data

has good spatiotemporal transferability, which can improve the
portability of the PSEW system. Besides, the decoded feature
shows good visualization and the model has relatively small
size and latency. This work provides a new perspective for the
practical application of PSEW systems in industrial scenarios.

In the future, few-shot learning is planned to be used and
the whole model is expected to be implemented in languages,
such C++ instead of TensorFlow’s Python interface, which can
further reduce the model latency by 15×. In addition, higher
spatio-temporal resolutions can be explored by optimizing the
sampling frequency and sensing mechanism of DOFS.
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