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Pipeline Safety Early Warning by
Multifeature-Fusion CNN and LightGBM

Analysis of Signals From Distributed
Optical Fiber Sensors
Yiyuan Yang , Haifeng Zhang , and Yi Li

Abstract— Energy pipelines are the backbones of global energy
systems. Monitoring their safety and automatically identifying
and locating third-party damage events are crucial to energy
supply. However, most traditional methods lack in-depth con-
sideration of distributed fiber signals and have not been tested
on real-world long-distance pipelines, making it difficult to
deploy them in operating long-distance pipelines. In this study,
we utilize a novel real-time machine-learning method based on
phase-sensitive optical time domain reflectometer technology to
monitor the safety of oil and gas pipelines. Specifically, we build a
multifeature-fusion convolutional neural network and LightGBM
fusion model based on two novel complementary spatiotemporal
features. The method was applied to a large amount of data
collected from real-world oil–gas transportation pipelines of the
China National Petroleum Corporation. The proposed method
could accurately locate and identify third-party damage events
in real-time under conditions of strong noise and various types
of system hardware, and could effectively handle signal drift
in the time and space dimensions. Our methodology has been
deployed at real long-distance energy pipeline sites and our
work will contribute to energy pipeline safety and energy supply
security. Furthermore, the proposed solution could be generalized
to other fields, such as industrial inspection, measurement, and
monitoring.

Index Terms— Distributed optical fiber sensor, industrial sig-
nal processing and monitoring, lightGBM, multifeature fusion
convolutional neural network (MFCNN), pipeline safety early
warning (PSEW).

I. INTRODUCTION

O IL and gas pipelines are widely used in the field of
energy transportation because of their low cost, small

size, and rapid construction. According to the latest statis-
tics from the Central Intelligence Agency (CIA), the total
length of long-distance oil and gas transportation pipelines
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worldwide is 3.55 × 106 km and is increasing by approx-
imately 30000 km per year. However, at the same time,
the accident rates associated with energy pipelines remain
high. For example, the rate is 0.25 accidents per year per
1000 km in Europe, 0.5 accidents per year per 1000 km in
the United States, and three accidents per year per 1000 km
in China. These accidents may cause oil and gas leakages
or even explosions, considerable indirect economic losses,
environmental pollution, energy crises, personnel safety issues,
and extremely negative publicity [1].

Most pipelines are buried underground to reduce their
floor space, which makes it difficult to observe their safety
aspects directly [2]. Moreover, most pipelines are laid through
complex environments such as farmland, deserts, hills, and
other remote areas, making them highly unsuitable for manual
inspection. Current approaches of pipeline safety inspection
include manual patrolling, unmanned aerial vehicle (UAV)
patrolling, and camera-assisted method at key locations,
but all of them cannot be used for automated, distributed,
and real-time pipeline inspections [3]. With the increasing
lengths of pipelines, these traditional and high-cost monitoring
approaches have become a major obstacle to the development
of modern and intelligent pipeline transportation systems.
Consequently, using intelligent early warning algorithms to
replace traditional manual monitoring could be of great benefit
to the energy pipeline industry and its systems.

Recently, sophisticated sensors, advanced artificial intelli-
gence (AI) algorithms, cloud computing technology, and big
data systems have made it possible to apply intelligent pipeline
safety early warning (PSEW) systems in the industry. Optical
fiber sensors are currently considered useful by researchers
because of their weak radiation, long-distance laying abil-
ity, high precision, noncontact measurement characteristics,
and good real-time performance [4], [5]. Optical fibers are
often already used in pipeline cables for the company’s
internal communication and data transmission purposes [6].
Researchers have attempted to utilize these in a distributed
PSEW system through phase-sensitive optical time domain
reflectometer (φ-OTDR) technology without any increase in
operating cost [7], [8], which can meet the typical industrial
requirements of spatial resolution of 5–20 m. Compared to
other optical fiber systems, such as Brillouin optical time
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Fig. 1. Structure of an optical-fiber-based PSEW system [9]. The signal transmitter sends a narrow-pulse signal into the optical fiber through a coupler (I).
When a dangerous event occurs (II), the signal carries its information back to the signal receiver (III). Then, the early warning unit immediately processes and
recognizes the signal (IV). If the prediction is of a damage event, the system notifies the UAV closest to the event to automatically gather evidence and issue
a warning immediately (V). Detailed information is sent to the central monitoring center for filing (VI). Also, the system periodically uploads information to
the data center to optimize and update the model and automatically download the latest model to the early warning unit (VII).

domain analysis (BOTDA) and fiber Bragg grating, φ-OTDR
has the advantages of sensitive, relatively high signal energy,
and support long-distance measurements. Besides, compared
to BOTDA, it supports single-ended access, i.e., when a break
in the fiber occurs, the part of the system before the break can
still work and the location of the break can be quickly located.
Therefore, φ-OTDR is currently the most common technology
used for PSEW system [3]. There has also been concur-
rent development of big data and data storage technology
that can provide high-quality data resources for data-driven
applications. Through distributed computing, cloud computing
technology can be used to break down huge data-processing
procedures into multiple small programs. Their results can
then be processed and analyzed through a system of mul-
tiple servers, which can process tens of thousands of data
points in a very short time. At the same time, AI algo-
rithms can build models with powerful abilities to approximate
real-time PSEW and spatiotemporal positioning of third-party
damage events. The novel optical-fiber-based oil–gas PSEW
system shown in Fig. 1 is such an intelligent system
that recognizes and locates dangerous events, issues early
warnings, conducts on-site inspections, and records data in
real-time.

Although optical fiber sensors have the advantages of good
real-time performance and easy installation [10], their internal
signals are susceptible to fluctuations because of environ-
mental influences [11]. Specifically, they have strong noise,
weak signals, signal jitter, and the problem of signal drift
over time and space [12], which places higher demands on
algorithms that recognize optical fiber sensor signals. Algo-
rithms that have been researched for recognizing and locating
third-party damage events in PSEW systems are mainly of
two types: 1) Traditional signal-processing methods, such
as wavelet decomposition (WD), wavelet packet decompo-
sition (WPD), mel-frequency cepstral coefficients (MFCC),

domain power spectrum, and other methods in the frequency
domain [13]–[16]. For example, Tanimola and Hill [13] pro-
posed using distributed temperature sensing and distributed
acoustic sensing, and Ting, et al. [14] used WD and WPD to
extract features. Tabi Fouda et al. [15] presented an estima-
tion method based on a frequency-domain power spectrum,
and Zhang et al. [16] applied MFCCs to extract features;
2) there are machine-learning and deep-learning methods,
such as Bayesian networks and their variants, the stochastic
configuration network (SCN) and its variants, hidden Markov
models (HMMs), convolutional neural networks (CNNs), and
probabilistic neural networks (PNNs) [17]–[30]. For instance,
Kabir et al. [17] and Guo et al. [18] used a Bayesian
network and variants for PSEW. Sheng et al. [19] updated
the SCN proposed by Wang and Li [20] based on trunca-
tion singular value decomposition, and called it TSVD-SCN.
Wu et al. [21] applied an HMM to extract event areas
and judge event categories. There are also other kinds of
deep-learning methods that can be used for PSEW [22]–[26].
In particular, Shi et al. [23], Wu et al. [27], Yang et al. [28],
and Wu et al. [29] proposed modified CNNs and variants,
whereas Kong et al. [30] applied a PNN to solve this problem.
Besides, Yang et al. [36] used bilinear CNN and LightGBM,
and this article is an extension of it.

Nevertheless, PSEW algorithms for use with distributed
optical fiber remain largely unexplored. Although the methods
described above have demonstrated good performance using
optical fiber sensor data in ideal experiments, it remains diffi-
cult to successfully apply them to actual industrial processes.
The main reason is the difference between the data dis-
tributions of samples obtained under experimental and real
conditions. Reducing and eliminating the negative impacts
caused by such differences are key to generalizing predictive
models derived from experimental data to real industrial
applications [9].
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Specifically, the following problems with PSEW systems
remain: 1) the spatiotemporal features of sensor signals con-
sistently change, making them difficult to process with a
single algorithm or a single feature [2]; 2) strong noise,
weak signals, and signal jitter, and the problem of signal
drift over time, make it difficult for an algorithm trained
under ideal conditions to fit complex environments in real
industrial applications [10], [36]; 3) a low-frequency signal
can be processed at higher speed with a cheaper solution, but
because of its transmission of less information per unit time,
a higher requirement is imposed on the algorithm [9]; 4) most
of the existing methods described above do not consider the
characteristics of distributed sensors, only extract features in
the time domain, and do not fuse the information of the
spatiotemporal dimensions [3], [5], [12]; 5) existing research
has not been validated for use with long-distance pipelines
already in service, which makes them unconvincing for use
with real site data characterized by strong noise, weak signals,
and drift problems [3], [13].

This article is motivated by strong industrial demand.
We expect to employ advanced ML techniques to improve
the performance and robustness of PSEW algorithms in iden-
tifying and locating damage events in real time in various
environments, and to reduce the cost of deployment. Our
contributions are summarized as follows.

1) We describe a novel application scenario (i.e., the iden-
tification and location of third-party damage events in
a long-distance PSEW system) for different ML tech-
niques, including MFCNNs and LightGBM.

2) We propose two dimensionless and complementary fea-
tures of the time domain that are based on spatiotem-
poral information in distributed optical fiber sensor
signals.

3) We present a novel multifeature-fusion ML model to
achieve a robust PSEW system and effectively mitigate
the negative impacts of the difference between training
and testing samples on localization and recognition
accuracy.

4) We have deployed our equipment and conducted exper-
iments in two operating long-distance oil–gas pipelines
to collect data from different hardware under various
environmental conditions and during multiple dangerous
events.

5) We evaluate the effectiveness of our method with other
baselines using different experimental datasets and find
that our model is more adaptable to complex environ-
ments and more scalable to hardware than other base-
lines. It also demonstrates good real-time performance,
high recognition accuracy, and positioning precision.

The remainder of this article is organized as follows.
The concepts of the ML techniques used are presented
in Section II, including CNNs, MFCNNs, and LightGBM.
Section III introduces the details of a pipeline safety early
warning experimental facility and our data acquisition method.
A complete approach for locating and identifying third-party
pipeline damage events in real-time is described in Section IV.
Comprehensive case studies, system deployment, and a

discussion are presented in Section V. A summary of this
article and future research direction are given in Section VI.

II. BACKGROUNDS TO RELATED MACHINE-LEARNING

TECHNIQUES

A. Convolutional Neural Networks

For the identification and localization of events that compro-
mise pipeline safety based on distributed optical fiber signals
with high-dimensional input, it is not practical to apply fully
connected neural networks to generate a classifier, since a high
number of weight parameters is necessary for each neuron.
Fortunately, CNNs provide a solution to reduce the parameter
number. The convolutional neuron shares the same weights as
each spatial location (i , j ). Therefore, the parameter number is
greatly reduced. The output oi, j of a convolutional layer with
location (i , j ) is as follows:

oi, j = σ
(
(W c ⊗ X)i, j + bc

)
(1)

where W c is the learned weight of the convolutional kernel,
which is a matrix, bc is the bias, ⊗ is the convolutional
operation, and σ(·) is the activation function. Common acti-
vation functions include the rectified linear unit (Relu) and
Sigmoid. Besides, we utilize batch normalization (BN) layers
to normalize the data before the activation function to resolve
the impacts of shifting and increasing input data [31]. After
the convolutional layer, it is common to add a pooling layer to
reduce the data dimension. The most common pooling layer
includes max pooling and average pooling.

A fully connected layer is required to generate the classifi-
cation stage after the convolutional, BN, and pooling layers.
The mathematical representation of the fully connected layer
is

oi, j = σ
((

Wf ∗ X
)

i, j
+ bf

)
(2)

where Wf is the learned weight matrix, and bf is the bias. The
activation function for multiclassification is Softmax

P(Ci |X) = eVi(X)

∑C
i=1 eVi(X)

(3)

where Vi (X) is the i th input data of the Softmax layer with
instance X , and C is the number of categories. P(Ci |X) is the
probability of class i with instance X . If P(Ci |X) ≥ P(C j |X),
then the unknown instance will be identified as class i and
vice versa.

In addition, the weight matrix above W c, W f and the bias
bc, bf in the CNN and fully connected layer are updated
through minimization of the loss between the ground truth
{y1

i , y2
i , . . . , yC

i } and the prediction {ŷ1
i , ŷ2

i , . . . , ŷC
i }, for N

training instances i = 1, . . . , N . The categorical cross-entropy
loss is used as the loss function for multiclassification, shown
as follows:

L= − 1

N

N∑
i=1

[
y1

i log
(
ŷ1

i

)+ y2
i log

(
ŷ2

i

)+ . . .+ yC
i log

(
ŷC

i

)]
. (4)

The categorical cross-entropy loss has fast convergence rates
and is numerically stable when coupled with Softmax.
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Besides, we need to use a suitable optimization algorithm
to minimize the loss function. Common optimizers include
root mean square propagation (RMSprop), adaptive moment
estimation (Adam), stochastic gradient descent (SGD), adap-
tive gradient algorithm (AdaGrad), an extension of AdaGrad
(AdaDelta), and Nesterov-accelerated adaptive moment esti-
mation (Nadam) [32]. Specifically, Adam has the advantages
of fast convergence and easy reference adjustment [33].

B. Multifeatures Fusion CNN

Although CNNs have good function approximation capabil-
ity, proper signal transformation and feature fusion are equally
important. Therefore, the multifeature fusion technique is
introduced to acquire complementary advantages between dif-
ferent features. Taking two features as an example, the results
of two features in the same labeled dataset should be similar.
So, in addition to the loss between the label and the predicted
values of each of the two features, the penalty between the
predicted label of the two features needs to be considered.
Without loss of generality, let p and q denote two probability
distribution vectors of the same length D, i.e., the number
of categories, and we define the penalty function L( p, q) by
employing the mean squared error, as shown as follows:

L( p, q) = 1

D
� p − q�2

2. (5)

So, we consider a training set {x1, x2, . . . , xN } where the
number of training samples is N . Let x1

i and x2
i denote the two

extracted features of xi , for N training instances i = 1, . . . , N ,
respectively. Let w1 and w2 denote the learned parameters
of two branches of the CNN. Thus, the loss function of the
multifeature fusion model can be written as follows:

Lall = λ1

N

N∑
i=1

L
(

fw1

(
x1

i

)
, yi

)+ λ2

N

N∑
i=1

L
(

fw2

(
x2

i

)
, yi

)

+ λ3

N

N∑
i=1

L
(

fw1

(
x1

i

)
, fw2

(
x2

i

))+ λ4�w1�2
2 + λ5�w2�2

2 (6)

where yi denotes the ground truth of the i th training sample,
and the set {λ1, λ2, λ3, λ4, λ5} denotes the hyperparameters
that control the weights of each part of the model and L2
regularization, respectively.

Then, we use an optimization algorithm, such as Adam,
to minimize the above loss function, and we can get the
optimal w1

opt and w2
opt values to use for prediction.

C. LightGBM

LightGBM is a novel gradient boosting decision
tree (GBDT) algorithm proposed by Microsoft in 2017 [34]. Its
advantages include automatic feature processing, avoidance
of overfitting, efficient training, distributed support, fast
running speed, and low memory overhead, making it more
appropriate and faster in industrial practice than other
algorithms. Specifically, LightGBM uses gradient-based
one-side sampling (GOSS) to exclude most of the samples
with small gradients and calculates information gain with
other data. Besides, unlike another common GBDT called

XGBoost, LightGBM applies a leaf-wise generation strategy
instead of the traditional level (depth)-wise approach
to reduce the number of training data. Furthermore,
LightGBM employs exclusive feature bundling (EFB) to
turn many high-dimensional mutually exclusive features into
low-dimensional dense features, which avoids computation
of redundant features, especially unnecessary zero-valued
ones. Also, LightGBM uses histogram computing and parallel
learning methods to optimize the calculation speed.

III. EXPERIMENTAL FACILITY AND DATA ACQUISITION

A. Experimental Facility

As shown in Fig. 2(b), we use a redundant single-mode
fiber from the cable installed at the same time as the pipeline
for communication, and generate a light source using the
Rayleigh scattering technique. The actual devices are shown
in Fig. 2(a). In detail, the laser we used is a narrow linewidth
laser from NKT Co. with an output power of 40 mW. The
optical fiber is a single mode (Class B) dispersion-shifted fiber
with a central wavelength of 1550 nm and an average power
loss of < 0.26 dB/km. The data acquisition card (DAC) is
from NI, USA, and the server is from ThinkPad. The rest of
the hardwares are custom-made by ourselves, and no other
commercial systems were used.

A simplified schematic of the deployed system is shown
in Fig. 2(c). It uses an ultranarrow linewidth light (UNLL)
source with a center wavelength of 1550 nm. An acoustic
optic modulator (AOM) shift chops the continuous light into
probe pulses and an erbium-doped fiber amplifier (EDFA) is
deployed to compensate for light energy losses. The amplified
probe pulses are injected into the optical fiber through a fiber
circulator (FC). When the vibrations generated by third-party
events propagate through the soil into the fiber, the length and
refractive index of the fiber at the corresponding location will
change because of the photoelastic effect, causing a change in
the phase of the backward Rayleigh scattered light as well as
the change of coherent interference result, thus capturing the
disturbance information of the fiber. Meanwhile, the event can
be located by the round-trip time of the light pulse between
the detection site and the light source [3]. Next, Rayleigh
backscattered light containing event information is directly
routed to a photoelectric detector (PD). The intensity evolution
over time is recorded by a DAC at frequencies of 5 MHz for
the time dimension and 500 Hz for the spatial dimension and
processed by a personal computer (PC) [35]. To adapt to the
monitoring requirements of long-distance pipelines (> 50 km),
we deploy a signal relay amplifier (SRA) every 25 km along
the pipe for signal boosting, which solves the problem of the
low signal-to-noise ratio (SNR) at the end of the optical fiber.

B. Data Acquisition

Our equipment was deployed in two oil–gas pipelines
of the China National Petroleum Corporation (CNPC). The
collected datasets are described in Table I. Case 1 in the
Table I is a 48-km gas pipeline of the West-East Natural Gas
Transmission Project Suzhou section, which will be discussed
in Section V-B, and Case 2 is an 85-km oil pipeline of
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Fig. 2. PSEW system experimental facility. (a) Actual devices. (b) Relative positions of the optical fiber cable and pipeline, which are typically 20–30 cm
apart. (c) Structural diagram of a deployed PSEW system.

TABLE I

DESCRIPTIONS OF THE COLLECTED DATASETS

the National Pipeline Network Northern Pipeline Company
Cangzhou section, which will be discussed in Section V-C.
Validation experiments were conducted in each of the two
pipelines. In contrast to ideal conditions, the collected sig-
nal was weak with strong noise and signal drift, which
is unique to real-world long-distance pipelines. Moreover,
to verify the universality and cost of the hardware, we tested
100- and 500-Hz signals, respectively. The lower the fre-
quency, the lower the equipment price but the lower the
data collection rate. Therefore, higher requirements were put
forward to the algorithm. It made engineering sense to test the
500- and 100-Hz signals separately.

The categories of damaging events included background
noise (no damaging events), manual excavation (potential
oil theft by drilling of the pipe), mechanical excavation
(third-party construction damaging the pipe), and vehicle
driving (potential threat of heavy vehicles rolling over the
pipe). Specifically, to investigate mechanical and manual exca-
vations, we conducted a wide variety of experiments, as shown
in Fig. 3. We performed mechanical excavations at positions
20, 10, and 5 m to the side of the pipeline, and directly above
it [Figs. 3(a)–(d)], to verify the ability of our algorithm to
recognize the distance of an event from the pipe. For manual
excavations [Figs. 3(e)–(h)], we experimented with various
scenarios, such as underground digging by spade and surface
digging with by hoe, spade, and spade plus hoe to verify the
robustness of our method in these cases. Then, we labeled
the precise categories and spatiotemporal coordinates of each
event.

There were two main difficulties in collecting the data:
1) vast manpower consumption. Professionally skilled tech-
nicians were required to travel along the pipeline to simulate
intrusions in poor and complex environments. Additionally,

Fig. 3. Real scenarios used for data acquisition and experiments.

to acquire sufficiently diverse data, intrusions would need to
be simulated at various locations in dozens of pipelines, which
would cost over $100, 000, and 2) high time consumption.
To verify the signal drift and robustness of the algorithm,
we conducted long experiments of more than five months in
real pipeline sites with harsh environments.

IV. METHODOLOGY

The proposed method first performs signal compensation to
suppress the energy loss of the signal because of transmission
in the fiber, then uses a novel feature generator to obtain the
spatiotemporal characteristics of the two complementary sig-
nals. Finally, it applies the described MFCNN and LightGBM
fusion model for localization and identification.
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Fig. 4. Visualization example of the proposed feature extractor. The parameters in Algorithm 1 used in this instance are as follows. The length of sliding
window Nswin is 60 and the sliding step Nsstp is 30, the total number of data in time domain T is 200, the number of considered observation points Ncpt is 7,
and the number of the considered windows Ncwin is 4.

A. Signal Compensation

When Rayleigh backscattered light is transmitted through
fiber, its energy decreases exponentially with propagation dis-
tance. More specifically, the peak power P(l) with attenuation
coefficient α is P(l) = P0 e−αl , where l is the propagation
distance and P0 is the initial peak power. So, the Rayleigh
scattering power is PR(l) = (P0e−αl Sαs Wv/2), where αs is
the Rayleigh scattering coefficient, which usually ranges from
0.12 to 0.15 db/km, S = (1/4)((λ/πnr))2 is the backscattered
light power capture coefficient (with wavelength λ, fiber core
refractive index n, and fiber mode field radius r ), W is the
pulsewidth of the light, and v is the speed of light in the
fiber. When the signal is received, its power becomes PR(l) =
(P0e−2αl Sαs Wv/2). Therefore, we use SRAs at approximately
25-km intervals to handle signal attenuation. To ensure the
universality of the algorithm for signals at different distances,
we compensate for the segmented attenuation of the signals
between boosters based on least-squared error with an expo-
nential function.

B. Feature Generator

To allow supervisors and technicians at stations along the
pipeline to visually monitor the situation for more intuitive
analysis, we need to extract the feature manually to ensure
its interpretability instead of using the visualization results
directly from the middle layer of the model [36]. Also, we need
to guarantee the real-time performance of the feature genera-
tor, which requires us to discard traditional frequency domain
methods, such as the time-consuming Fourier transform and
even fast Fourier transform. Moreover, to improve the robust-
ness of the features, we need to build dimensionless features.

Based on the above, we propose two novel features that are
both calculated in the time domain and can represent low-
and high-frequency spatiotemporal information. Specifically,
the peak feature represents high-frequency and instantaneous
information, and the energy feature describes low-frequency
and continuous information. Algorithm 1 shows the calculation
method in detail. Besides, Fig. 4 visualizes an example of the
calculation process of the feature extractor.

C. Event Recognizer With MFCNN and LightGBM Fusion
Model

In the event recognizer, we fuse MFCNN and LightGBM to
perform spatiotemporal localization and recognition. Specifi-
cally, we use MFCNN for initial feature extraction to build the
feature vectors, and then apply LightGBM for more accurate
localization and recognition. The specification of the model
we used is summarized in Table II.

1) The standardized peak features and energy features
generated by the feature generator are used as inputs to
the two branches of the MFCNN. We take the number of
considered observation points Ncpt as 7, and the number
of considered windows Ncwin as 100, i.e., the input size
of each branch is 7×100, which corresponds to 20 s of
500-Hz signals or 100 s of 100-Hz signals, and 120 m
of pipeline.

2) The network is trained by allocating a random 60% of
the total dataset as a training set. Specifically, we use
sparse category cross entropy with four events as our
base loss function, and the total loss is given by (6).
Also, using Adam as the optimizer, we monitor the loss
values of the validation set for hyperparameter tuning.
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TABLE II

MODEL SPECIFICATION

Algorithm 1 Processing of Feature Generator
1: Input: Raw data X , Historical data Xold.
2: Parameter: Length of sliding window Nswin and sliding

step Nsstp, Total number of observation points L, Total
number of data in time domain T , Number of considered
observation points Ncpt and windows Ncwin, Threshold α
and β.

3: Step 1: Signal compensation of X and Xold

4: Conduct the division of X and Xold with the corresponding
position of PR(l), respectively.

5: Step 2: Compute two features
6: for i in {1, . . . , L}
7: for j in {1, . . . , T

Nswin
}

8: Conduct compute peak for D = X[i, j ∗ Nsstp : j ∗
Nsstp + Nswin] and get Fpeak[i, j ]

9: for k in {1, . . . , Nswin − α}
10: Conduct division of

∫
(D[k+α]−D[k])2 with Xold

and get Fenergy[i, j ]
11: end for
12: Convergence checking: if Fpeak[i, j ] > β, set

Fenergy[i, j ] ← 1; otherwise, continue.
13: end for
14: end for
15: Conduct division of

∑
(D[k + α] − D[k])2 with Xold and

get Fenergy[i, j ]
16: Conduct slicing of the Fenergy and Fpeak to get Menergy and

Mpeak with the number of m and the shape of (Ncpt, Ncwim)
17: Step 3: Standardization
18: for M in {M (1)

peak, . . . M (m)
peak, M (1)

energy, . . . M (m)
energy}

19: M ← M−M̄
σM

, where M̄ is the average of M and σM is
the standard deviation of M .

20: Output: Matrix of peak features {M (1)
peak, . . . , M (m)

peak} and
energy features {M (1)

energy, . . . , M (m)
energy}.

Additionally, we set the initial learning rate to 0.0015
and specify it to decay to 95% of the current value after
every ten epochs. The batch size is 128 with 100 epochs.

3) We freeze the parameters of the two flatten layers
in Table II, and the feature map concatenating from the

two branches is input to LightGBM with the parameters
shown in Table II. We then retrain from obtaining the
optimal LightGBM model with four outputs.

We used a desktop computer with an Intel Core i7-8700
CPU running at 3.2 GHz, a GTX1080ti GPU, and 32 GB of
RAM for training and verification. Considering the industrial
deployment, we used TensorFlow 2.0.0 to build the model
under Python 3.7.

V. CASE STUDY

In this section, we describe the evaluation of our algo-
rithm against other methods in terms of identification and
localization performance, time cost, and model size. Further,
we present and discuss test results for several pipelines in
service.

A. Evaluation Indices

To measure the performance of our model, we used four
metrics: accuracy (Acc), sensitivity (Sen), specificity (Spe),
and area under the curve (AUC). In detail, accuracy is the
ratio of the number of correctly classified categories to the
total number of categories. It is a widely used index that does
not consider class imbalance. Sensitivity, which is also called
the true-positive rate, recall, or probability of detection in some
fields, measures the proportion of positives that are correctly
identified. Specificity, which is also called the true-negative
rate, measures the proportion of negatives that are correctly
identified.

Moreover, the AUC is equal to the probability that a
classifier will rank a randomly chosen positive instance higher
than a randomly chosen negative one. It is the area under
the receiver operating characteristic (ROC) curve [38]. Also,
unlike accuracy, the AUC is a widely used index that considers
class imbalance. Specifically, for a predictor f , an unbiased
estimator of its AUC can be expressed by the following
Wilcoxon-Mann–Whitney statistic [39]

AUC( f ) =
∑

t0∈D0

∑
t1∈D1 1[ f (t0) < f (t1)]

|D0| · |D1| (7)

where 1[ f (t0) < f (t1)] denotes an indicator function that
returns 1 if f (t0) < f (t1); otherwise, it returns 0; D0 is
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Fig. 5. Visualization results of proposed two features in Case 1. (a) Heat maps of peak features at 500 Hz. (b) Contour maps of energy features at 500 Hz.

TABLE III

RESULTS OF DIFFERENT METHODS APPLIED TO THE CASE 1 TESTING SETS (*INDICATES THE PROPOSED METHOD,
BOLD AND UNDERLINED VALUES ARE THE BEST RESULTS)

the set of negative examples, and D1 is the set of positive
examples.

B. Case 1: A 48-km Gas Pipeline of the West-East Natural
Gas Transmission Project Suzhou Section

1) Data Information: We evaluated our proposed algorithm
in an operational gas pipeline of the West-East Natural Gas
Transmission Project Suzhou section. In detail, our evalua-
tion was conducted at a CNPC pipeline from 10 May to
2 June and from 19 November to 17 December in 2016. The
total collected data was approximately 494 GB at 500 Hz
and 100 Hz, and the pipeline was approximately 48 km long
with 2400 observation points, each 20 m apart, i.e., the spatial
resolution was 20 m, which was sufficient in real industrial
applications. Two SRAs were installed at 25 and 46 km along
the pipeline. Moreover, the environment along the pipeline was
complex, with farmland, factories, frequent human activity,
and frequent construction, so the gathered data contained
several types of noise, a low SNR, and attenuation specific
to long-distance pipelines.

2) Feature Extraction Test: We applied the feature extractor
introduced above and Algorithm 1 to extract the two signal
features. Based on several repetitive experiments using the
half-interval search method, we subjectively obtained the opti-
mal values of the following parameters. The length of the slid-
ing window Nswin and sliding step Nsstp were 100, the number
of considered observation points Ncpt was 7, i.e., 120 m, and
the number of considered windows Ncwin was 100, i.e., 20 s for
500 Hz and 100 s for 100 Hz signals. The threshold α was 2
and β = 27 and 5 for 500- and 100-Hz data, respectively.
Fig. 5 shows the visualization results of the two proposed
features at 500 Hz as examples, which are similar to those in
the 100-Hz data. In Fig. 5(a), background noise (III) appeared

to be unchanged, whereas manual excavation (I) was clearly
cyclical and caused background noise between two events
of equal length. Similar to manual excavation, mechanical
excavations (IV) were also periodic, but there was no obvious
brief background noise between the two mechanical excava-
tions, which had a marked energy decay in the time domain,
mainly because of them having stronger transient energy than
that of manual excavation. Vehicle driving (II) caused some
blue-black slashes as shown in Fig. 5(a) because of the road
intersecting with the pipeline; dark slashes represent cars
driving on the road. The steeper the slash, the slower the
vehicle; the denser the slash, the greater the traffic flow. On the
contrary, similar to the peak features, the energy characteris-
tics are periodic in Fig. 5(b). More specifically, the manual
excavation period was approximately 2.2 s, whereas that of
the mechanical excavation was at least 9 s, which corresponds
exactly to the cycle of the event. As for the maximum values of
the dimensionless energy features, those of manual excavation
from 20 to 120 were much lower than those of mechanical
excavation from 50 to 550.

3) Identification Performance Test: We considered the per-
formance of the event recognizer and compared it with the
other methods in the testing set. The results for an average
of ten repeated experiments based on the above evaluation
indices are presented in Table III for 100- and 500-Hz data.
It is notable that because the datasets and the goals achieved
are different, it is impossible to make a direct comparison with
the baselines of previous related work; however, we tried some
other methods based on the results of extracted fusion features
for comparison, e.g., classification and regression tree-based
random forest (CART_RF) [40], radial basis function kernel
support vector machine (RBF_SVM) [41], simple deep neural
network (DNN) [2], simple LightGBM, and simple MFCNN.
From Table III, it can be seen that MFCNN_LGB provided
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Fig. 6. Feature maps and identification results from the Case 1 pipeline. The top portion shows the peak features extracted from the feature generator and
the bottom portion presents the corresponding identification results. (a) Manual excavations appear at approximately 14 km and last for nearly 110 s (result
of manual excavation, vehicle driving, and noise). (b) Mechanical excavations appear at 32 km and last for approximately 210 s (result of vehicle driving,
manual excavation, and noise). There are also continuous vehicle-driving events from 8 to 11 km.

Fig. 7. Visualization results of proposed two features in Case 2. (a) Heat maps of peak features at 500 Hz. (b) Contour maps of energy features at 500 Hz.

better results than the baselines in terms of the different
evaluation indices, which stems from it better integrating the
two proposed high- and low-frequency features, and making
the full frequency-domain features available to the model.
In addition, it had better performance in all four events than
the DNN and RBF_SVM, which proves that the convolution
can provide more effective feature extraction for distributed
signals with front-to-back frame dependency and a constant
correlation length. As for simple LightGBM and CART_RF,
because the input dimension of the data was large and unstruc-
tured and had local features, most of the results were still not
as good as those of the other methods, despite their relatively
low memory requirements and high speed. Besides, LightGBM
could further fit the features obtained from MFCNN and obtain
better recognition results than the fully connected layer.

4) Complete Pipeline Test: Fig. 6 shows the complete
results of identification performance in Case 1 using 500-Hz
data. Fig. 6(a) shows that the accuracy of our model in
spatiotemporal localization and identification of manual exca-
vation (I) was 98.63%. There were false alarms for mechanical
excavation (III) at a rate of approximately 2.21%, but such
samples were almost discrete and we could constrain the
minimum time or observation point of the intrusion events to
filter them. Fig. 6(b) shows that the model could adequately

locate and identify mechanical excavations (III) with 97.56%
accuracy in the temporospatial domain.

C. Case 2: An 85-km Oil Pipeline of the National Pipeline
Network Northern Pipeline Company Cangzhou Section

1) Data Information: Data were used from another real
test site containing the Tianjin Port to Huabei oil pipeline
of the National Pipeline Network Northern Pipeline Company
Cangzhou section. The tested section was from Qingxian to
Renqiu and was about 85 km in length. Along the pipeline,
there were 11 large- and medium-sized river crossings, 7 ordi-
nary railways, 13 kinds of highways, and several cities.
Therefore, it was a different noise environment compared to
Case 1. In addition, we collected more than 1.69 TB of data
from 8 to 29 November 2020 at 100 and 500 Hz, including
four complete construction days of the CNPC. Two SRAs were
installed at distances of 25 and 56 km along the pipeline. The
resolution in the time and space domain was the same as for
Case 1.

2) Feature Extraction Test: We used the same parameters
as Case 1 for feature extraction, and the results are shown
in Fig. 7. The peak results shown in Fig. 7(a) are basically
consistent with the results discussed for Case 1. However,
there were some differences in values and periods that were
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TABLE IV

RESULTS OF DIFFERENT METHODS APPLIED TO THE CASE 2 TESTING SETS (*INDICATES THE PROPOSED METHOD,
BOLD AND UNDERLINED VALUES ARE THE BEST RESULTS)

Fig. 8. Feature maps and identification results from the Case 2 pipeline. The upper portion shows the peak features extracted from the feature generator and
the lower portion represents the corresponding identification results. It can be clearly seen that mechanical excavation occurred for 15 min at around 36 km.
Mechanical excavation was usually accompanied with signals of vehicle driving, i.e., the excavator’s engine was running or the position was adjusted in order
to find a better angle for excavation.

related to the burial depth of the pipeline, the relative positions
of the fiber cable and pipeline, and the soil properties. The
average distance from the test pipeline to the surface in
Case 1 was about 1.5 m, the local climate was humid, and
the soil moisture content was relatively high, which were
conducive to the transmission of vibration signals. However,
the average distance from the pipe to the ground surface in
Case 2 was about 2.0 m and the experiment was conducted in
winter, so the soil was relatively dry, which had an inhibiting
effect on the transmission of vibration signals. On the contrary,
the energy results shown in Fig. 7(b) were also generally
consistent with those of Case 1; however, for the maximum
energy values, the new data had much smaller values than
those of the same intrusion event in Case 1. In addition to the
reasons given for the peak results, there were also hardware
deployment issues. Specifically, the 85-km pipe in Case 2 was
almost twice as long as the 48-km pipe in Case 1, yet the
number of SRAs used in each was the same, which resulted in
a greater SNR in Case 1 than in Case 2 at the same location.
However, despite the above problems, our feature extractor
could still extract correct and distinct features, which indicated
that our dimensionless features had good robustness.

3) Identification Performance Test: Comparing the results
in Table IV with those of Case 1, our evaluation matrix values
mostly had slight declines. This was caused by a decrease in

TABLE V

DEPLOYMENT PERFORMANCE TESTING WITH THE CASE 1 PIPELINE

the quality of the extracted features for the reasons referred to
the information in the Case 2 feature extraction test section.
Nevertheless, our model was still better than the baselines in
terms of most evaluation metrics and met the requirement of
real field usage.

4) Complete Pipeline Test: The complete 85-km pipeline
peak features and the corresponding identification results are
shown in Fig. 8. Because the environment along the pipeline
was more complex in Case 2 than Case 1, it was obvious
that there were more events. For example, in the range of
0−1 km, the pipe passed through a city and its signal was
relatively strong, whereas 24−26 km was the first position
of the SRA, and after verification at the real site, the original
signal here had a saturation problem, resulting in the features
obtained from the feature extractor being complex. Neverthe-

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 01,2021 at 01:57:21 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: PIPELINE SAFETY EARLY WARNING BY MULTIFEATURE-FUSION CNN 2514213

TABLE VI

PERFORMANCE COMPARISON OF PRACTICALLY DEPLOYABLE PSEW SYSTEMS

less, the above factors had little impact on the final recognition
results. It also proves that our model has good generalization
ability for the features obtained by the feature extractor.

D. Other Tests and Analysis

1) Deployment Performance Test: Model size and running
time are typical practical engineering problems. They are
critical to deployment performance, hardware applicability,
and real application effects. Therefore, we tested a 4-min
dataset from Case 1 pipeline and repeated it ten times, with
the averaged results summarized in Table V. Our method
could accurately identify and locate damage events within
an extremely short period of time running either under a
GPU (GTX 1080ti) or CPU (i7-8700 3.2 GHz) with matrix
optimization and extra feature threshold recognition methods.
In particular, the total recognition time was 15.64 s for 500 Hz
and 6.142 s for 100-Hz signals processed by the GPU, which
are almost the same as those with the CPU, and fully meet
the industrial-level real-time performance requirements. The
recognition response time was only about 13.58 ms per km
for 500-Hz data and 5.33 ms per km for 100-Hz data under
the 20 m spatial resolution and the set parameters with the
GPU. Furthermore, the model size was only 13.79 MB when
controlling the parameters of LightGBM, such as max_depth
and min_data_in_leaf, allowing it to be deployed in most
embedded systems.

2) Feature Adaptability: The applicability of the features
was also verified. Despite the different factors that affect
signal propagation, such as the pipeline, fiber deployment,
soil moisture content, and changes in the experimental time
and space, we found that our feature extractor can clearly
distinguish multiple types of intrusion events, such as man-
ual excavation, mechanical excavation, and vehicle traffic
(Figs. 5 and 7). It could be attributed to the dimensionless-
ness of the features, which eliminated the base values and
made it largely independent of changes in the environmental
conditions. Obviously, from the results shown in Figs. 5–8,
it can be seen that the peak features can provide professional
supervisors with real-time visualization results, which has high
industrial application value.

3) Modeling Spatiotemporal Stability: With the above two
case studies, we have demonstrated the effectiveness of our
algorithm in handling temporal and spatial signal drift. Specif-
ically, in the time domain, we used data from May and
June (summer, local temperature around 30 ◦C) as the training

and validation set in Case 1, whereas data from November and
December (winter, local temperature around 0 ◦C) were used
as the test set. From another perspective, Case 1 was tested
in 2016, whereas Case 2 was tested in 2020. As for the spatial
dimension, the 2016 data for Case 1 were collected in Suzhou
in central China whose high soil moisture and the shallow
burial depth of the pipe were suitable for the propagation
of vibration signals, whereas the 2020 data for Case 2 were
gathered in Cangzhou, northern China, whose dry and sparse
soil and the deep burial depth of the pipe were not suitable
for the propagation of vibration signals. The distance between
them was about 980 km, and there were great differences
in pipeline depth, soil environment, temperature, and so on.
However, the same method could be successfully used and
deployed in both places. So, the above experiments show the
good temporal and spatial robustness of our system.

4) Comparison of Practically Deployable PSEW Systems:
The performance of some practically deployable PSEW sys-
tems is summarized in Table VI, which includes the latest
researches from both academia and industry. It is clear to see
that our system has good recognition and localization accuracy,
thanks to the data-driven and well-fitting deep-learning meth-
ods, not just the ML methods in the other systems. However,
the positioning resolution of our method is the worst, although
it meets the industrial requirements for localization resolution
in PSEW system [43], which requires us to continue optimiz-
ing in terms of hardware sensors and recognition algorithms.

5) Further Discussion: There are definitely still some prac-
tical deployment issues that need to be considered in more
detail, such as further analysis of the discrete misidentified
points in Fig. 6 and the rural misidentified points in Fig. 8.
In addition, for practical applications, we can use the model
compression method to further reduce the parameters of
the model and apply the parallelization operation to reduce
deployment cost. Furthermore, later, we should pay more
attention to the issue of data utilization; i.e., using more
data from nonexperimental areas for feature construction and
model learning. Besides, the problem of low SNR at the
end of the optical fiber between two SRAs needs to be
overcome when deploying longer distance pipelines, which
was partly discussed in Case 2. Most of these issues have
been implemented in our experiments and deployments but
are beyond the scope of this article and will be presented
in our future work. Finally, as our method is based on the
spatiotemporal discussions of distributed signals for signal
processing, feature extraction, and event recognition, it is quite
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possible to use proposed methods in other types of optical
fiber sensors and improve their spatiotemporal resolution and
detection performance.

VI. CONCLUSION

In this article, we proposed an end-to-end MFCNN and
LightGBM fusion model based on the novel spatiotemporal
features of distributed optical fiber sensors used to monitor
the safety of long-distance oil-gas pipelines, i.e., to locate and
identify third-party dangerous events in real time to ensure the
safe of energy transportation. The experimental results from
two real long-distance pipelines indicate that the proposed
scheme can identify and locate damage events with low SNRs
and little signal drift in the time and space dimensions.
It demonstrated high average accuracy of 95.86% for 100-Hz
data and 97.53% for 500-Hz data in the testing sets. Besides,
the proposed feature generator can effectively extract the
complementary and dimensionless features in a short period
and has a good visualization effect, which is independent of the
deployment environment and has great monitoring value. More
importantly, our system fully meets the industry standards in
terms of model size, real-time performance, and adaptability
to different deployment conditions and environments, and has
been deployed in a real long-distance energy transportation
pipeline system. Therefore, our scheme provides a reference
for third-party damage event recognition based on a distributed
optical fiber sensor PSEW system in an open environment.

In addition, we plan to explore the possibility of achieving
higher spatial resolution and shorter recognition response
times, making the distributed-signal early warning system to
be used in other fields of industrial inspection, measurement,
and monitoring, such as national border security technology,
early earthquake warning, and perimeter security systems.
Besides, we are interested in applying our recognition algo-
rithms to other optical fiber sensor systems.
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