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ABSTRACT 

The measurement of the instantaneous flow rate of gas-liquid two-

phase flow is a key technology in the industrial production 

process, and how to build an instantaneous model with long-term 

cumulative flow labels is also an important technical problem. In 

order to solve it, we propose a novel CNN (convolutional neural 

network) modeling algorithm for the instantaneous flow 

measurement. Firstly, the one-dimensional convolutional neural 

network is used to build the instantaneous model. Then the long-

term flow label slice and average technology are applied for the 

constraint model. Finally, based on the supervised model, the 

instantaneous flow model can be trained unsupervised. Test 

results show that the method can observe instantaneous flow 

changes and the novel CNN prediction results are generally 

superior to the other prediction model directly used the average 

flow samples labels and CNN. The novel CNN modeling 

algorithm proposes in this paper will have important application 

value for industrial process measurement. 
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1. INTRODUCTION 
Online measurement of gas-liquid two-phase flow is a key 

technology in many fields such as petroleum, chemistry, 

pharmaceutical, etc. Mastering the changes in instantaneous gas 

and liquid during the two-phase mixed-flow process is a problem 

that the process measurement industry is concerned about. Due to 

the complicated flow process and difficult mathematical 

description, it is difficult to accurately measure the flow rate of 

each phase in the mixed flow process of gas-liquid two-phase 

flow. Therefore, in recent years, researchers have begun to discuss 

the measurement models based on machine learning [1]. For 

example, Fan S used conductivity probe and neural network to 

perform gas-water two-phase slug flow measurement in a 

horizontal tube, which implemented the measurement accuracy of 

gas and liquid flow error less than 10% [2]. Hu D applied a 

convolutional neural network to predict the flow of gas-liquid 

multiphase flow in different regions [3]. Zhao C used the 

microwave time series method to measure the water-liquid ratio of 

the oil-water-gas three-phase flow and implemented an average 

absolute error of 5.2% in the moisture content of the sample [4]. 

However, the flow of gas and liquid is changing continually, so 

the current measured flow rate is for a period of time such as an 

average flow of 5 minutes. The error of the instantaneous flow 

sample’s label is considerable, which makes the model training 

error larger [5]. If we want to get the instantaneous flow label, it 

requires a higher cost to purchase more advanced equipment or 

modify the process. However, it is impossible to achieve during 

the measurement process or experimental engineering production 

process. At present, the common method still uses the traditional 

test separation tank to obtain the average/accumulated flow label. 

However, it cannot achieve the highly accurate measurement of 

instantaneous measurements.  

In order to improve the accuracy of the instantaneous flow 

measurement. According to the industrial practical application, we 

improve the structure of the classical convolutional neural 

network and combines the semi-supervised learning method to 

build the instantaneous flow measurement model [6,7], which can 

learn the instantaneous flow change lows in the process under the 

constraint cumulative flow.  

2. TECHNICAL BACKGROUND 

2.1 Multiphase Flow Measurement 

Technology 
Multiphase flow online measurement technology has been listed 

by international energy companies such as BP as one of the five 

key technologies for determining the success of the future oil and 

gas industry. Its application covers well test, reserve management, 

production distribution, flow metering, safety supervision and 

other processes. Online measurement of oil-water-gas three-phase 

flow has been a major concern in the field of multiphase flow and 
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oil production. However, due to the complexity of the multiphase 

flow process and too many parameters need to be measured, it is 

difficult to measure accurately. 

In recent years, many researchers have tried and introduced new 

technical methods to improve the accuracy and applicability of 

oil-water-gas three-phase flow such as venturi pressure drop 

technology. Venturi pressure drop technology has many 

advantages such as simple structure, good stability and low cost. 

So it becomes a useful method used by many research institutions 

and companies at home and abroad such as FMC, Roxar and Agar 

[8]. The double differential pressure venturi flow sensor uses the 

differential pressure between the contraction section and the 

expansion section of the venturi to realize the resolution of the 

liquid phase and the measurement of the phase separation flow, 

which provides a simple and efficient measurement method for 

the online measurement of gas-liquid two-phase flow without 

separation [9]. The venturi differential pressure flowmeter 

consists of three parts: the “contraction section”, the “throat” and 

the “diffusion section”. Its technical principle is based on the 

continuity equation and the Bernoulli equation, the fluid will 

locally compress when the fluid passes through the “contraction 

section” of the venturi, the flow rate increases, and the static 

pressure decreases so that a positive pressure difference is formed 

before and after the contraction section. When the “diffusion 

section” passes, the flow rate decreases and the static pressure 

rises, forming a negative pressure difference. It is further 

discovered through experiments that the venturi sensor has 

different ratios of gas and liquid contained in the fluid in the 

“contraction section” and “diffusion section” differential pressure 

signals, and the signals obtained are not the same, so they can be 

installed separately. The differential pressure sensor of the 

“contraction section” and the “diffusion section” obtains two sets 

of differential pressure signals (dP1, dP2). Besides, pressure (P) 

and temperature (T) sensors obtain gas density and combine 

machine learning algorithms to obtain gas and liquid phase flow. 

A schematic diagram of the venturi sensor structure is shown in 

Figure 1. 
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Figure 1. Schematic diagram of the Venturi sensor structure 
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Figure 2 The structure of one-dimensional CNN 

2.2 One-dimensional Convolutional Neural 

Network 
Convolutional Neural Network (CNN) is a feedforward neural 

network with convolutional computation and deep structure. It is 

one of the representative algorithms of deep learning [10,11]. 

According to the structure and application fields of convolution 

kernels in convolutional neural networks, they are also divided 

into one-dimensional convolutional neural network, two-

dimensional convolutional neural network and three-dimensional 

convolutional neural network. The venturi sensor measurement 

principle is a one-dimensional data structure for detecting time 

series such as differential pressure [12]. Therefore, a one-

dimensional convolutional neural network structure is used to 

build an instantaneous flow measurement model. 

The one-dimensional convolutional neural network is also 

composed of input layer, convolutional layer, pooling layer and 

fully connected layer. Its structure is shown in Figure 2. The 

following are the detailed steps of calculation. 

Input layer.     [         ]
  is the input layer of the neural 

network, where        is the time series data,   is the time 

series length,   is the dimension of data.    is the feature vector of 

the moment  ,        . 

Convolutional layer. Sequence   is mapped by a one-dimensional 

convolution operation can be expressed as   
 
   (    

 
  ).   

is represented as a one-dimensional convolution operation.   
 
 is 

    feature map generated by a convolution kernel   
 
,   [    ] 

and    is the number of convolution kernels. The convolution 

kernel   
 
      is the matrix of weights. And   is the size of 

the convolution kernel,   is the offset.       is the activation 

function, which can provide nonlinear modeling capabilities of the 

network and realize the nonlinear mapping learning ability of the 

deep neural network. The common activation functions are “relu”, 

“sigmoid”, “tanh”, etc. 

Pooling layer’s main function is feature extraction, dimension 

reduction, eliminate over-fitting and improve the fault tolerance of 

the model. The most common pooling operations are average 

pooling and maximum pooling. Average pooling: Calculate the 

average of the selected area as the pooled value of the area. 

Maximum pooling: Calculate the maximum value of the selected 

area as the pooled value of the area. 

Fully connected layer plays the role of classification or regression 

in the whole convolutional neural network. Its network structure is 

consistent with the traditional neural network structure. It consists 

of multiple hidden layers. The fully connected layer further 

abstracts the global time series features. The combination is 

finally classified and output through the “softmax” activation 

function or the regression output is performed via the “relu” 

activation function. In this paper, the instantaneous flow 

prediction of gas-liquid two-phase flow is modeled, which is a 

regression problem, so the “relu” activation function is adopted. 

3. MODEL  

3.1 Data Acquisition 
In order to verify the feasibility of the gas-liquid instantaneous 

flow model based on the cumulative flow sample label, we carry 

out a series of experiments based on the actual situation of the 

oilfield site in the multi-phase flow engineering laboratory 

platform of Tsinghua University (Figure 3). The experimental 

procedure is single phase fluid (gas/liquid) - turbine flow meter 
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(acquisition of sample label) - mixer (gas-liquid mixing state) - 

multiphase flow meter (acquisition of measurement signals) for 

testing experiments. Multiphase flowmeter measurement data: 

venturi front differential pressure (contraction section, dP1), 

venturi differential pressure (diffusion section, dP2), operating 

pressure(P), fluid temperature(T) total of 4 groups of observation 

signals. Sample labels are gas-phase flow and liquid phase flow 

parameters. During the measurement process, since the data 

acquisition process is a continuous dynamic measurement, the 

single-phase flow passes through the turbine flow meter and then 

flows through the multi-phase flowmeter. The measurement data 

has a time difference, and the gas-liquid pass through the mixer to 

form a mixed fluid with different transient volume gas content 

(GVF), thus there is an error between the measurement tag and the 

fluid flow label that actually flows through the three-phase 

flowmeter. Therefore, the cumulative flow rate (average flow rate 

during the conversion period) of each group of sample data is 

continuously collected for 5 mins to reduce the sample data 

label’s error. In this paper, the experimental samples are divided 

into the training set, verification set and test set with the ratio of 

8:1:1. A specific experimental scheme is shown in Table 1. 

 separating tank 

high pressure gas holder

 
liquid：0-10m3/h

gas:0-100Nm3/h

multiphase flow meter

dP1
dP2

P
T

 

 

flow 
direction

 
Figure 3. experimental platform 

 

Table 1. experimental scheme 

Name parameters 

medium 
gas: air 

liquid: an oil-water mixture 

flow range 
gas：0-100 Nm3/h 

liquid：0-10 m3/h 

measurement 

parameter 

double differential pressure, pressure and 

temperature 

Sampling 

frequency 
measurement data:10Hz, label data:1Hz 

Sample duration 
single sample duration: 5mins; 

total sample duration: 125hr 

 

  
(a)Original data                       (b) Processed data 

Figure 4. measurement data of venturi sensor 

3.2 Modeling Process 
A random set of venturi measurement signals for the 5mins gas-

liquid two-phase flow is shown in the Figure (4), and Figure 4(a) 

shows the four original signals (dP1, dP2, P, T) measured, then 

the working condition density of the gas( ) is calculated by P and 

T is shown in Figure.4(b), the method could reduce the input data 

and improve the computational accuracy of the gas flow rate. As 

can be seen from the changes in dP1 and dP2 in Figure (4), the 

flow of gas and liquid is constantly changing in 5mins. 

An instantaneous gas-liquid flow rate identification model (named: 

GL_model) uses a two-layer one-dimensional convolution layer 

and four-layer full connection layer in this article. Figure 5. 

describes the 1min instantaneous flow calculation model structure. 

The data input dimension is 600×3 where the 600 represents the 

length of the signal in the time range and 3 represents the type of 

signal, respectively dP1, dP2 and   . According to actual 

requirements, the time length can be set to the different scales, 

e.g., the input signal can be set to 600×3, for the one second 

instantaneous gas-liquid flow rate identification model. 

In GL_model, Conv1D represents the convolution layer, 

MaxPooling1D represents the pooling layer, and Dense represents 

the full connection layer, here the Conv1D (32,3,relu) is expressed 

as one-dimensional convolution, the number of convolution kernel 

is 32, the size of convolution sum is 3, and “relu” is used as the 

activation function. Maxpooling1D (2) is expressed in the pooling 

layer, the maximum value in the two adjacent regions is 

calculated as the pooled value. Dense(512,relu) means that 512 

neurons are output in the fully connected layer, and the “relu” is 

adopted as the activation function. This GL_model also adopts 

Flatten to convert the output multidimensional data of the pooling 

layer into one-dimensional data input to the full connection layer. 

Besides, dropout regularization rule is also used in the model to 

solve the overfitting and gradient vanishing problems of deep 

neural network.  

The output of last full connection layer of this GL_model is the 

1mins instantaneous flow rates of gas and liquid, but in actual 

production, there is no instantaneous flow rate label (such as the 

1mins flow rate label), but the long term accumulated or average 

flow label, such as the 5mins accumulated flow rate label, hence, 

it is impossible to train the GL_model. To solve this problem, the 

constraint model (named: Ave_Model) of realizing instantaneous 

flow model training by using the long-term average flow rate 

labels is shown in Figure 6. The Model is divided into an input 

layer, slice layer (Lambda), shared layer (GL_model) and 

Average output layer. In the input layer, sequence data with 

parameters of 3000×3 is input where 3000 represents the length of 

the data for 5mins. In the slice layer, the input layer data is sliced 

into an equal length of time. In this case, input layer data is sliced 

into 5 parts and the length of time is 1mins. In shared layer, the 5 

parts slice data simultaneously calls the 1mins instantaneous 

model （GL_model）in Figure 5 to calculate the instantaneous 

flow rate in 1 minute, and in this layer, the weights of each slice 

call model are shared. In the Average output layer, the five results 

output from the above shared layer are averaged to output, and the 

output value corresponds to the average flow rate label of the 

5mins. In this model, it is necessary to convert the accumulated 

flow into the average flow rate during the 5mins. 

The above designed instantaneous model and constraint model 

need to be combined for model training. In the model training 

process, the constraint model (Ave_Model) uses supervised 

learning to ensure the accuracy of the model’s average flow 
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calculation, and the instantaneous model (GL_model) adopts 

unsupervised learning to learn the change law of instantaneous 

flow autonomously and determines the flow rate distribution of 

the cumulative flow in the instantaneous process [13]. So the 

GL_model can be constricted intelligently based on the above 

method. The above model construction method proposed in this 

paper can also build different instantaneous models according to 

time scales, such as the 1s, 5s, 10s, 30s, or a shorter time model. 

The Keras deep learning framework is adopted in the overall 

training process of the model. The relevant training parameters are 

batch size=128, loss=’mse’, learning rate=0.0001, epoch=3000, 

optimizer=’Adam’ and GPU is’2080ti’. 

 

Dense（64,relu）
input：（None,512）

output：（None,64）

Dropout（0.4）
input：（None,64）

output：（None,64）

Dense（16,relu）
input：（None,64）

output：（None,16）

Dense（2,relu）
input：（None,16）

output：（None,2）

InputLayer(1mins)
input：（None,600,3）

output：（None,600,3）

Cnnv1D（32,3,relu）
input：（None,600,3）

output：（None,200,32）

Cnnv1D（64,3,relu）
input：（None,100,32）

output：（None,33,64）

Flatten
input：（None,33,64）

output：（None,2112）

Dropout（0.4）
input：（None,2112）

output：（None,2112）

Dense（512,relu）
input：（None,2112）

output：（None,512）

MaxPooling1D（2）
input：（None,200,32）

output：（None,100,32）

 

Figure 5. 1mins measurement model 

 

InputLayer(5mins)
input：（None,3000,3）

output：（None,3000,3）

Lambda(1:600)
input：（None,3000,3）

output：（None,600,3） Lambda(1201:1800)
input：（None,3000,3）

output：（None,600,3）

Lambda(2401:3000)
input：（None,3000,3）

output：（None,600,3）

Lambda(601:1200)
input：（None,3000,3）

output：（None,600,3）
Lambda(1801:2400)

input：（None,3000,3）

output：（None,600,3）

Model(1mins)
input：（None,600,3）

output：（None,2）

Average(5mins)
input：[（None,2）,（None,2）,（None,2）,（None,2）,（None,2）]

output：（None,2）

 

Figure 6.  Constraint model 

3.3 Model Evaluation 
3.3.1 Feasibility evaluation of instantaneous model 
Since the experiment only has accurate sample labels of the 

average flow rate of 5mins, how to verify the accuracy of the 

instantaneous flow model? The sample processing method is 

adopted in the article. Firstly, 5 sets of 5mins flow samples are 

spliced into a 25mins sample, using the average flow rate of 

25mins as the model training sample labels. Secondly, we use the 

method in Figure 5 and Figure 6 to train a 5mins gas phase and 

liquid phase flow rate model. Finally, the trained 5mins 

GL_model is tested and evaluated using the accurate 5mins test 

sample, and the evaluation index using MAPE (mean absolute 

proportional error). The prediction results and relative error range 

of 5mins GL_model are shown in Figure 7. 

As can be seen from Figure 7, the result is that MAPE = 7.6% for 

the 5mins liquid phase and MAPE = 4.8% for the 25mins liquid 

phase average flow rate, MAPE = 18.7% for the 5mins gas phase, 

and MAPE = 13.4% for the 25mins gas-phase average flow rate. 

It can be seen from the above test results that the MAPE of the 

5mins instantaneous GL_model is higher than the MAPE with 

25mins. The reason is that the training process of the 5mins model 

is an unsupervised learning process, and the comparison results 

are understandable. However, the 5mins model also achieves a 

good effect. It is a very important application value for the 

attention of the instantaneous flow of gas and liquid. 

 

   

   
Figure 7.  Test results and relative error of 5mins GL_model 

3.3.2 Accuracy evaluation of instantaneous model 

construction 
Under the above conditions to verify the feasibility of the 

instantaneous model, we further analyze the minimum time 

resolution and accuracy of the instantaneous GL_model. The 

5mins time length sample labels are used as the average flow rate 

to training the different time scale GL_models of 1s, 5s, 10s, 30s, 

1mins and 5mins respectively. For the post-training model are 

also tested and evaluated using test samples of the 5mins average 

flow rate with the Total parameter (Total number of model 

parameters), MAPE (mean absolute proportional error) and MAE 

(mean absolute error). The prediction and comparison results are 

shown in Figure 8. A set of liquid and gas-phase predictions using 

different transient models(1s、5s、10s、30s、1mins、5mins) 

over a 5mins flow variation range are given in Figure 8(a)and 

Figure 8(c) respectively. From the changes of dp1 and dp2 in the 

figure, and it is known that the internal fluid has fluctuated greatly 

during these 5mins. Predicted results for six time-varying 

instantaneous flow models (1s, 5s, 10s, 30s, 1mins, 5mins) 

explain that the proposed GL_model method (such as 1s model) 

can accurately capture the flow changes of fluid, the 5mins model 

can’t achieve. The evaluation results for different time resolution 

models are shown in Table 2. For Total parameter, the smaller the 

model parameters, the better the model training and calculation, 

and the 1mins model parameters are only 1/137 of the 5mins 

model. For the liquid phase calculation results, the MAPE and 
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MAE evaluation results of 1s, 5s, 10s, 30s, and 1mins belong to 

the same level, and the results of these GL_models are better than 

the 5mins model contracted directly use the original 5mins data 

samples. For gas-phase instantaneous flow, MAPE and MAE of 

1s, 5s, 10s, 30s, 1mins GL_model is also better than 5mins 

measurement data to build the model. However, for the 1s 

GL_model, the instantaneous measurement result has a lower 

accuracy than other instantaneous GL_model for the reason that 

the sample of 5mins length needs to be sliced into 300 copies to 

build a 1s model. The excessive number of slices also bring a 

difficulty to the unsupervised learning for the transient model. 

Hence, the evaluation index of the time resolution and accuracy of 

the comparison model need to be considered comprehensively. An 

exhaustive comparison of the instantaneous GL_model designed 

in this article, the 5s model is the most suitable for the 

measurement of instantaneous flow rate in liquid-gas phases, the 

model has excellent performance in accuracy and can also observe 

the change of fluid instantaneous flow in a shorter time. In view 

of the above research, the construction of the instantaneous flow 

measurement model of gas-liquid two-phase flow proposed in this 

paper is feasible and has practical application value. 

 

  
(a)                                                   (b) 

   
 (c)                                                   (d) 

Figure 8.  Instantaneous GL_model prediction results 

 

Table 2. Evaluation results 

Model 
Total 

parameter 

MAPE: 

Liquid 

(%) 

MAE: 

Liquid 

(m3) 

MAPE: 

Gas 

(%) 

MAE: 

Gas 

(Nm3) 

1s 20,065 7.54 0.251 12.76 5.464 

5s 61,025 7.16 0.232 9.25 3.704 

10s 101,985 7.37 0.238 8.30 3.568 

30s 290,401 7.16 0.230 8.60 3.714 

1mins 560,737 7.29 0.236 9.39 4.267 

5mins 2,748,001 9.58 0.341 15.31 7.452 

4. CONCLUSION 

In this paper, an instantaneous flow rate measurement model for 

gas-liquid two-phase flow based on novel 1D-CNN is proposed. 

Firstly, a two-layer one-dimensional convolutional layer and four-

layer fully connected layer are used to build the instantaneous 

flow rate measurement model. Then, the long-term average flow 

label is used to build the constraint model. Finally, the 

instantaneous model is trained using unsupervised learning with 

the constraint model. Testing evaluation results are as follows: 

(1) Using the method proposed in this paper, the instantaneous 

flow rate results at different time resolutions can be learned 

autonomously through long-time cumulative flow labels, and the 

instantaneous flow changes during the flow can be visually 

observed. 

(2) Instantaneous flow rate model measurements (AMPE, MAE) 

are better than the 5mins model contracted directly use the 

original 5mins data sample (shown in Table 2). 

(3) The construction method of the instantaneous model proposed 

in this paper can be applied in other fields and has important 

application value for industrial process measurement. 
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